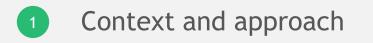
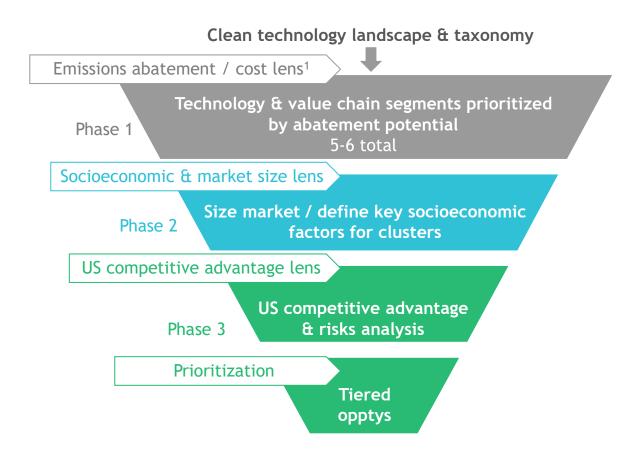
BCC BOSTON CONSULTING GROUP


Potential for US Competitiveness in Emerging Clean Technologies

Publication Appendix

SEPTEMBER 2022


Table of contents

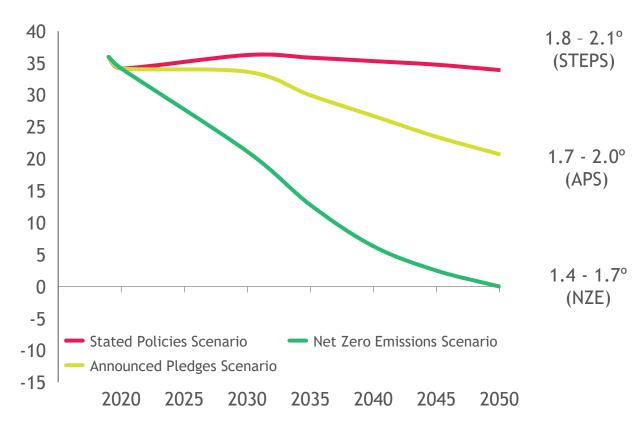
- 2 Technology selection
 - Summary findings
 - Technology-specific findings
 - Electrochemical Long Duration Energy Storage (LDES)
 - Electric Vehicles (EVs)
 - Low-carbon hydrogen (H2)
 - Advanced Nuclear Small Modular Reactors (SMRs)
 - Direct Air Capture (DAC)
 - Clean steel
 - Phase 1: Prioritization Materials
 - Phase 2: Market & Competitive Positioning Analysis
 - Phase 3: Competitive Recommendations

Context and approach

Context | 3-phase approach to prioritize technologies based on abatement potential, socioeconomic factors, and US competitive advantage

3

Technologies will be split across 9 parts of the value chain for further analysis


Value chains will be adapted as need based on the specifics of the technology

Raw materials & inputs	OEM	Project Development	Financing	EPC	O&M	Transport & Storage	Offtake	Support Services
Definition pe	r value chain segi	ment						
Natural resources used as technology OEM inputs Fuels / inputs for energy generation and product production	Manufacture of critical technology components	Project origination & coordination • Site selection • Permissions & contracting • Secure financing	Providing capital & deal structure • Source, type & amount of funding	Engineering, procurement & construction • Detailed eng. design • Supply chain mgmt • Contractor mgmt. • System testing	 Operations & maintenance Baseline operations Asset monitoring Maintenance & repairs 	Logistics of product final delivery to customer • Transport logistics • Product storage	Sale of end product to customer • Final offtake contracting • Sales channels / markets	Differentiated offerings to support use after sales E.g.: • Software • Consulting services • Auditing / certification
Example: Gre	en hydrogen (illu	strative, not ex	(haustive)					
 Electrolyzer OEM inputs (e.g., metals, etc.) Natural gas 	 Electrolyzer, compressor, and water purifier manufacturing 	 Local/ state/ federal permitting Green PPAs Grid inter- connection 	• Debt, equity, grants, etc.	 Project- specific plant design Local construction contracts 	• Electrolyzer monitoring & upkeep	 H2 conversion, compression, storage, transport & final delivery 	 Energy generation Synthetic fuels Chemicals production 	 Auxiliary trading markets

4

Scenarios built on data from IEA World Energy Outlook deployment forecasts

Annual CO2 Emissions (GTPA)

Est. 2050 impact (C°)

Scenario descriptions

Stated Policies Scenario (STEPS): Reflects specific policies currently in place and that have been announced by governments around the world

Announced Pledges Scenario (APS): Assumes all commitments made by governments around the w

commitments made by governments around the world are met in full and on time¹

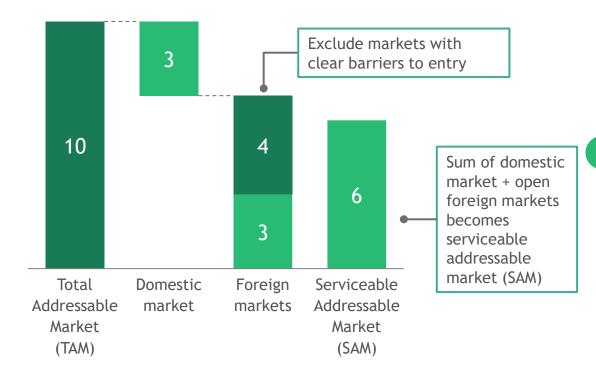
Net Zero Emissions by 2050 Scenario (NZE): Meets energyrelated UN Sustainable Development Goals² and reaches net zero emissions by 2050

1. Includes Nationally Determined Contributions (NDCs) and longer-term net zero targets 2. Those goals related to universal energy access and major improvements in air quality Source: IEA World Energy Outlook 2021

Market sizing completed at three levels

Total Addressable Market (TAM): Total market demand for a given product / service

Serviceable Addressable Market (SAM): Portion of TAM which can be feasibly accessed


Serviceable Obtainable Market (SOM): Portion of SAM which is can be captured SOM estimates leverage technology specific approaches using analogous examples

More detail on approach included on next slide

The U.S. serviceable addressable market will exclude foreign markets with clear political or economic barriers to entry

Illustration of approach

Est. market size per prioritized segment and scenario (\$B)

Illustrative SAM calculation

Total addressable foreign market size

- Aarkets with clear political/economic barriers to entry
- Subtotal: Serviceable foreign markets

U.S. Domestic market

Serviceable Addressable Market (SAM) for the U.S.

Barriers to entry may be political (e.g., potential import bans or non-market barriers from China) or economic (e.g., unlikely to export products with high transportation costs to countries with sufficient domestic supply)

Backup | TAM exclusions approach is based on direct policy barriers, indirect policy barriers, and economic barriers

Existing domestic or foreign trade policies with would directly or indirectly inhibit export of specific technology value chain segments

Trade barriers can include:

- U.S. export controls (e.g., dual-use controls)
- Bans on foreign investment
- Active embargoes or sanctions
- Significant domestic subsidies / state support for domestic industry

Ex: Trade barriers to advanced nuclear exports to China

- Raw materials: U.S. has prohibited export of raw materials to Chinese state-owned nuclear companies due to dual-use concerns
- OEM: U.S. has prohibited export of any advanced nuclear technologies to China due to dual-use concerns

General observed or expected economic trends which would significantly hamper economic competitiveness of U.S. exports

Economic barriers can include:

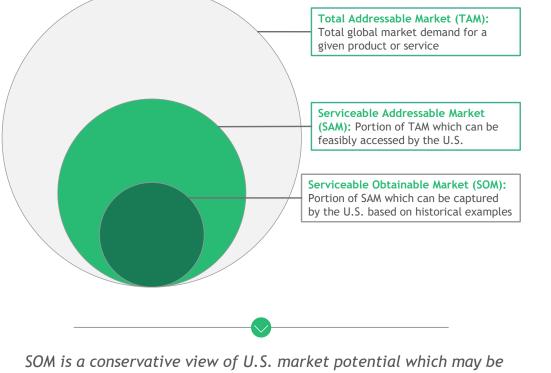
- Prohibitively high transport costs
- Abundant / cheap domestic inputs
- Significant early lead in domestic IP

Ex: Economic barriers to clean steel offtake in the Asia-Pacific region

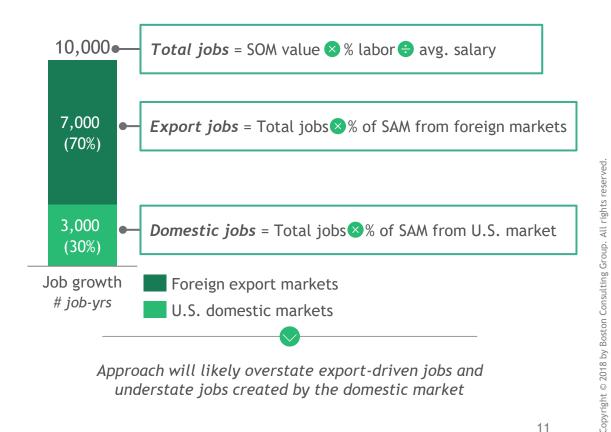
- Steel is extremely heavy, making shipping very expensive and limiting potential export destinations
- Large supply of cheap Chinese steel discourages other imports into Asia due to lack of cost-competitiveness

U.S. SOM has been estimated by using current-state proxies within relevant markets for potential future-state market share

Technology	SOM % share of TAM	Reasoning
Clean Steel	5 - 15%	 Business as usual: Average U.S. share of global steel production, 2015-2020 Market leader position: Servicing entirety of NA market, 2021 market size
Electric Vehicles	10 - 55% Varies by segment	 Business as usual: U.S. share of global EV vehicle production, 2021 Market leader position: Chinese share of passenger vehicle production (raw materials, battery & powertrain manufacturing, OEM), U.S. share of global SaaS market (software, aftersales services)
Hydrogen	15 - 25%	 Business as usual: US share of global hydrogen production 2014-2018; DOE Market leader position: Chinese share of global H2 2022
LDES	10 - 50%	 Business as usual: U.S. share of global Li-ion storage manufacturing capacity Market leader position: China's projected share of global Li-ion manufacturing capacity in 2023
DAC	15 - 25%	 Business as usual: Based on US share of global hydrogen production 2014-2018 as proxy; DOE Market leader position: Based on Chinese share of global H2 in 2022 as proxy; DOE
Advanced Nuclear SMR	s 20 - 30%	 Business as usual: Share of all nuclear plants designed by U.S. companies Market leader position: Share of ongoing nuclear plant projects designed by Chinese companies


9

Competitive advantage factors and definition of "high" criteria


Refined factors	Metrics & criteria for competitive advantage	Rationale for metrics assessed
Raw material availability	Presence of required resource in accessible geographies, leveraging GRI maps	Domestic reserves of critical/strategically important minerals is a prerequisite for building a raw material export capability
Intellectual Property & innovation	Lead in IP creation over market, as measured by patent volumes & Global Innovativeness Index (GII)	Patent volumes are a strong indicator of relative technology commercialization activity and technical innovation
Research & technical leadership	Highest # literature publications by country, and/or highest citations & relative impact	Peer-reviewed publications from public & private institutions reflect the level of advancement in research, and indicate the likelihood of a country to maintain technical leadership
Low operational costs	Lower quartile of energy & labor costs leveraging average industry salaries & exchange rates	Labor & energy costs are two key drivers of operational margin and ability to export at competitive price points
Demand / supply side policy	Scope of announced government policies, including public investment initiatives & incentives	Government policy will be a key driver in supporting at-scale deployments of many clean technologies, and relative scale may determine which countries achieve market dominance
Relative domestic market maturity	Highest private investment globally in domestic market, or within ~20% of leader High M&A transactions globally	High private investment suggests the domestic market has achieved significant scale and capital markets believe in the future growth potential, while M&A in nascent markets reflects healthy competition and a de-risked environment where companies feel comfortable making large, leveraged investments
Regulatory environment & existing infrastructure	High relevant infrastructure preparedness & accessible regulatory ecosystem, leveraging industry reports and expert interviews	Infrastructure & existing regulatory environment are critical enablers that allow for new facility construction, permitting, and lower start-up barriers

Context | Job numbers are conservatively based on Serviceable Obtainable Market (SOM), the lower bound estimate of potential U.S. global market share

Review of market size definitions used

Proposed approach to jobs quantification

further increased with strategic policy support

11

Context | Definition and example of job-years

What are job-years?

- A "job-year" is a measure of employment based on the equivalent of employing a single FTE (full-time equivalent) for one year
- Job-years = # of jobs x duration of jobs

Why use job-years?

- Unlike using the absolute number of jobs, job-years capture both the number of new jobs created as well as how long a given job would be expected to last
- Job-years can be thought of as the total amount of employment a given segment would create over time

Illustrative example of job years vs number of jobs:

Construction: 15 new construction jobs which last 2 years each
15 jobs x 2 years per job = 30 job-years

O&M: 3 new maintenance jobs which last 10 years each
3 jobs x 10 years per job = 30 job-years

Despite construction seeming to have more **jobs**, it is equivalent to O&M in terms of total **job-years**

Deep dive | Approach used to assess potential job impacts on disadvantaged communities and communities impacted by the energy transition

Identify counties where job growth could occur

Incorporate technology-specific limits where projects can be deployed

Identify counties where at least 80% of relevant jobs are located today using BLS NAICS codes

Output: Single list of counties which are likely to see relevant job growth

Identify counties with disadvantaged communities or those impacted by the transition

Leverage CEQ to identify counties with disadvantaged communities

Identify top 80% of counties with highest fossil fuel production and generation capacity per capita

Output: Two sets of counties with target communities present

Assess overlap between counties with job growth and counties with target communities

Run two sets of comparisons to identify overlap between potential job growth and target communities:

Overlap output from 1 with 2A to estimate overlap between geographies with **potential job** growth with disadvantaged communities

Overlap output from 1 with 2B to estimate overlap between geographies with **potential job** growth with communities impacted by the energy transition

Output: Overlapping geographies with job potential and target communities

Quantify proportion of target communities and proportion of job growth in overlapping counties

A Proportion of target communities: Take population of disadvantaged / impacted communities in counties with potential job growth and divide by total disadvantaged / impacted population to get proportion of the communities with job growth potential

4B Proportion of potential jobs:

Take number of jobs created per segment which could be located in target communities and divide by total jobs created in the segment to get proportion of jobs created which could land in target communities Copyright © 2018 by Boston Consulting Group. All rights reserv

Technology selection

Six criteria were assessed to inform prioritization based on mitigation impact, economic growth, and national security / strategic interests

Criteria		Description				
CO2	Abatement potential	Describes the total abatement potential per technology in 2050 as Mt CO ₂ e / year, primarily based on IEA's Net Zero by 2050 Roadmap				
CO ₂	Expected abatement cost	Describes the expected abatement cost of each technology on a \$ / ton of CO ₂ abated basis. Figures are primarily pulled from EDF 2.0, with additional triangulation from IEA and proprietary BCG research				
	 Feasible export types Summarizes preliminary view on most likely form of export, including: OEM: Physical assets or plant equipment which enables the associated technology IP: Ability to license a technology or process without necessarily exporting the physical assets O&M: Provision of core operations and maintenance services/tools required for the technology Product: Physical output products for the associated technology Services: Provision of non-core ancillary services to support a technology or associated market Software: Provision of software products or services to directly or indirectly support a technology 					
	Ease of export	 Summarizes preliminary view on how feasible exports for the export types shown may be, classified as: High: Currently traded in international markets Medium: Similar products are currently traded internationally Low: International trading is expected, but no similar examples exist today N/A: No trade exist due to clear barriers exist to international trade 				
<u>ري</u>	Near-term deployment potential	 Defines the time scale at which each technology is expected to be deployed at based on IEA projections, defined as: High: Achieves >30% of abatement potential by 2030 Medium: Achieves >30% of abatement potential by 2035 Low: Achieves >30% of abatement potential by 2040 N/A: Achieves >30% of abatement potential after 2040 				
*	National security and strategic interest	 Classifies the potential level of national security implications per technology, based on implications across several topics: High: Has direct potential military applications Medium: Provides liquid fuels Low: Supports grid resiliency N/A: Does not have any clear national security implications 	1			

Long list of technolo	igles evaluated	i for potential	analysis	High	Medium	Low N/A
Selected	Abatement potential (2050 Mt CO ₂ e)	Feasible export types	Expected cost (2050 \$/ton CO ₂ e)	Ease of export	Near-term deployment	Nat'l security interest
Tier 1: Criteria-based priorities						
Grid-Scale LDES (electro-chemical) ⁴ Grid-Scale LDES (other) ⁴	Critical enabler	Product, IP, Software Product, Software	Critical enabler			
Utility-scale Solar ⁴	6,500	Product	\$30			
Electric Vehicles ⁴	6,500	Product, IP, Software	\$20-60			
CCUS ^₄	6,000 - 7,000	Product, IP	\$20 - 100			
On-shore Wind ^{4,10}	4,200 - 8,000	Product	\$10-40			
☆ Hydrogen ⁴	4,100	Product, IP, Services	\$100-150			
Off-shore Wind ^{4,10}	1,100 - 2,000	Product	\$30-40			
Grid-Scale Li-ion ⁴	Critical enabler	Product, IP, Software	Critical enabler			
Advanced Nuclear (SMRs) ^{2,4}	300 - 500	Product, IP	\$110			
Smart Grid/Grid Infrastructure	Critical enabler	Product, IP, Software	Critical enabler			
Tier 2: Additional potential priorities						
☆ DAC ^{4,5}	700 - 1,800	Product, IP	\$220			
Clean Cement ^{4,9}	1,500	Product, IP	\$60			
Sustainable Aviation Fuel (PtL) ^{4,7,11}	800 - 1,400	Product, IP	\$170			
DG solar ^{4,5,12}	800	Product, IP	\$90 - \$150			
☆ Clean Iron/Steel/Aluminum (EAF) ^{4,8,9}	900	Product, IP	\$60			
Tier 3: Deprioritized						
Tech Solutions for Ag ^{1,4}	2,300	Product, Services	-\$230 - 130			
Energy Efficiency & Climate Services ⁴	2,100	Services	-\$10 - 70			
Geothermal ⁴	2,000	Product, Services	\$50 - 150			
NBS in Agriculture ⁴	1,600	Services	\$100			
Residential Electrification ⁴	1,600	Product	\$100 - 140			
Biofuels ⁴	3,100 - 4,300	Product, IP	\$30-160			
Electric Charging Infrastructure	Critical enabler	Product, IP, Services	Critical enabler			

Long list of technologies evaluated for potential analysis

1. Includes zero-emissions farm equipment, emissions-reducing feed, modern animal & crop mgmt. practices 2. EDF MACC 2.0 Average costs

3. Drawdown Report, 4. IEA NZE 2050, 5. Princeton CMI, 6. World Resources Institute, 7. IATA, 8. Excludes CCUS-enabled abatement, 9. Impact extrapolated using current % of emissions where not included in explicit projections, WRI, 10. Cornell University MDPI, 11. Rocky Mountain Institute 12. DG solar cost extrapolated using LCOE premium relative to utility-scale solar

16

Backup | Sources for Carbon Abatement Potential

Key sources		Description
	IEA (Net Zero Energy 2050 Report & others)	Key emissions milestones required by sector, including carbon abatement targets
Tatis C	Princeton CMI	Reviews technologies & scale required to achieve Net Zero emissions
	EDF MACC 2.0	Carbon abatement impact by clean technology through 2050, including abatement costs
	World Resources Institute	Historical view of carbon emissions by sector
	IPCC	Reviews technologies & scale required to achieve <1.5 degrees warming
	Drawdown Report	Granular view of carbon abatement impact of highly specific initiatives across industries and emissions sectors
Others sources ir IATA, NREL, Corn	ell MDPI, SEIA, RMI, LDES Society,	Industry group reports or technology-specific research studies

International Geothermal Ass.

Backup | Descriptions of potential export types

Export types	Description	Examples
OEM	The physical assets or plant equipment which enables the associated technology	Li-ion battery packWind turbines / solar panels
Intellectual Property (IP)	The ability to license a technology or process without necessarily exporting the physical associated assets	 Direct Air Capture (DAC) technology Hydrogen electrolysis technology Clean cement production processes
Operations & Maintenance (O&M)	The provision of core operations and maintenance services or tools required to deploy the associated technology	 Contracting specialized vessels to maintain offshore wind farms Contracting to operate and maintain large CCUS plants
Product	The physical output products for the associated technology	 Clean steel products Clean hydrogen / ammonia Barrels of sustainable aviation fuel
Services	The provision of non-core ancillary services to support a specific technology or associated market	 Geothermal seismic studies to assess resource potential for future projects
Software	The provision of software products or services to support the operations of a technology, either directly or indirectly	 Battery operations software which help maximize project economics EV charging software to optimize charging and provide load-balancing grid services

Summary findings

Prioritized segments have been separated into three categories to inform Phase 3 recommendations

"Maintain U.S. leadership"

Current positioning:

• U.S. holds existing advantage in a large market-potential segment

Potential implication:

- Policymakers must be vigilant and aware of foreign competitors investing in the market and eroding competitive advantage
- Protective policies that invest in the future development pipeline, support existing players, and expand export potential can secure future U.S. positioning

"Invest to build advantage"

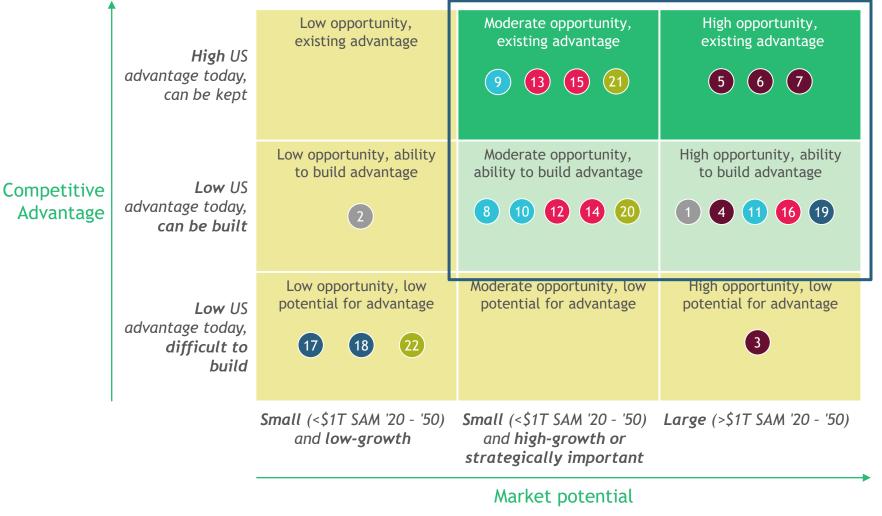
Current positioning:

• U.S. has **no advantage** in a **large market-potential segment**, but has the potential to build one

Potential implication:

- Significant, course-correcting public investment is required to build new U.S. advantage in a highpotential market segment
- Strong regulatory policy and largescale demand- and supply-side public subsidies are likely advisable to leverage U.S. potential and capture market share

"Maintain status quo"


Current positioning:

 Market potential is small or U.S. has no potential to build advantage

Potential implication:

- Passive policy to create general environmental & regulatory structures that support innovation in the segment may be advisable
- Given low reward/high risk potential, no large-scale investments or structural reforms are advantageous

Relative market potential and current US positioning guide where to focus time and efforts

High opportunity, low potential for advantage 3 AC - Project Development DAC - EPC DAC - Transport & storage DAC - Offtake 16 DAC - Offtake 17 Clean Steel - OEM 18 Clean Steel - EPC 19 Clean Steel - Offtake 20 SMR - Raw Materials 21 SMR - OEM 22 SMR - EPC

LDES - OEM

EV - OEM

 $H_2 - OEM$

H₂ - Offtake

DAC - OEM

5

LDES - O&M software

EV - Battery & Powertrain Manu.

EV - Software Development

EV - Aftersales Services

H₂ - Transport & Storage

H₂ - Project Development

EV - Raw Materials

Market sizing | EV value chain segments are largest across technologies in terms of market value, followed by select LDES and DAC segments

	Cumulative U.S. SAM (APS) 2020 - 2050 (\$B)	Cumulative U.S. SOM (APS) 2020 - 2050 (\$B)	Est. Average Margin
EV - OEM	27,070	3,160 - 9,400	0 - 4%
EV - Aftersales services	9,230	1,070 - 5,700	9 - 10%
Clean Steel - Offtake	5,400	7 00 - 870	8 - 12%
EV - Battery & Powertrain Manufacturing	4,350	5 10 - 1,500	<mark>6 - 9</mark> %
EV - Software	4,040	460 - 1,100	12 - 15%
Low-carbon Hydrogen - Offtake	3,850	610 - 2,500	-
LDES - OEM	1,380	170 - 870	20 - 30%
EV - Raw materials	1,220	140 - 350	5 - 35%
DAC - Offtake	1,030	240 - 400	-
Clean steel - OEM	920	120 - 150	8 - 10%
Low-carbon Hydrogen - OEM	610	100 - 170	10 - 15%
Low-carbon Hydrogen - Transport & Storage	340	55 - 90	5 - 15%
Clean Steel - EPC	270	35 - 40	8 - 10%
Direct Air Capture - EPC	190	42 - 70	5 - 10%
Advanced SMRs - EPC	175	45 - 65	5 - 8%
Advanced SMRs - OEM	150	37 - 40	15 - 15%
Low-carbon Hydrogen - Project Dev.	140	35 - 55	10 - 20%
DAC - Transportation & Storage	88	21 - 40	10 - 20%
DAC - OEM	85	19 - 20	10 - 15%
DAC - Project Development	38	8 - 15	15 - 20%
Advanced SMRs - Raw Materials	30	7 - 10	30 - 60%
LDES - O&M Software	7	1 - 5	<u>50 - 70%</u>
	SAM - Export SAM - Domestic	SOM - Export SOM - Domestic	

Competitive advantage | Overlap between grey "key dimensions" and areas where U.S. holds advantage suggests strong domestic position today • U.S. holds high comp adv

					Low	Demand /	Key	dimension
Segment	Summary Rating	Raw Material Availability	Intellectual Property	Technical Leadership	Operational Costs	Supply Side Policies	Relative market maturity	Regulatory env. & infrastructure
EV – OEM				\checkmark		\checkmark		
EV - Aftersales services			v	 Image: A start of the start of				
EV - Battery & powertrain manufacturing				\checkmark		V		
EV – Software				\checkmark				
EV - Raw materials						\checkmark		
LDES – OEM						\checkmark		\checkmark
LDES - O&M software				\checkmark			 Image: A start of the start of	\checkmark
Low-carbon Hydrogen – OEM						\checkmark		
Low-carbon Hydrogen - Transport & Storage						\checkmark		\checkmark
Low-carbon Hydrogen - Project Dev.					\checkmark	\checkmark		
Advanced SMRs – EPC								
Advanced SMRs – OEM			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Advanced SMRs – Raw Materials				\checkmark		\checkmark		\checkmark
DAC - EPC				\checkmark	\checkmark			
DAC - Transportation & Storage			V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DAC - OEM			\checkmark				 Image: Control of the second se	
DAC - Project Development			V	 Image: A start of the start of	 Image: A start of the start of		 Image: Constraint of the second second	\checkmark
DAC - Offtake				V				
Clean Steel - Offtake								\checkmark
Clean Steel – OEM								
Clean Steel - EPC					-			
(

U.S. has a strong existing competitive advantage and should maintain it

U.S. has a potential to build a durable competitive advantage

23

Societal impact | Policy intervention likely needed to spur job growth in disadvantaged communities

	Cumulative Domestic Job-years 2020 - 2050 (APS Scenario U.S. SOM)	Proportion of jobs expected in target communities ¹	Cumulative Tax Impact (\$B) 2020 - 2050, (APS Scenario U.S. SOM)
EV - OEM		5,600,000 ~10%	
EV - Aftersales services	2,400,000	~20% Values reflect	141
EV- Battery ²	1,050,000	~60% "business as usual" results	33
EV - Software	1,040,000	~20% without policy	15
EV - Raw materials	370,000	~40% intervention,	62
LDES - OEM	315,000	~15% which could	20
LDES - O&M Software	5,000	~25% increase job availability	<1
H2 - OEM	188,000	~10%	12
H2 - Transport & Storage	240,000	~10%	9
H2 - Project Dev.	175,000	~20%	9
Clean steel - OEM	250,000	~10%	7
Clean steel - EPC	130,000	~10%	3
DAC - Transport & Storage	50,000	~15%	2
DAC - EPC	270,000	~15%	8
DAC - OEM	30,000	~20%	1
DAC - Project Dev.	50,000	~20%	2
SMRs - EPC	390,000	~20%	10
SMRs - OEM	65,000	~15%	3
SMRs - Raw Materials	50,000	~20%	2

1. Includes disadvantaged communities and communities impacted by the energy transition; 2. Battery & powertrain manufacturing Source: White House Council on Environmental Quality (CEQ) Climate and Economic Justice Screening Tool; Resources for the Future "Mapping County-Level Exposure and Vulnerability to the US Energy Transition"; BCG analysis

Job quality | EV OEM shows the largest opportunity to create jobs available to those without college degrees

	Cumulative Domestic Job-years 2020 - 2050 (APS Scenario U.S. SOM)	Avg. Job Duration (Years)	Est. Avg. Salary Avg. (Range)	
EV - OEM	5,660,000	10+ yrs	\$50 - 100K	
EV - Aftersales services	2,460,000	10+ yrs	\$100 - \$150K	
EV- Battery ¹	1,050,000	10+ yrs	\$50 - 100K	
EV - Software	1,050,000	10+ yrs	\$100 - \$150K 🛛 📥	Majority of well-paying
EV - Raw materials	370,000	10+ yrs	\$50 - 100K	jobs are associated
LDES - OEM	320,000	10+ yrs	\$50K - 100K	with higher levels of
LDES - O&M Software	5,000	10+ yrs	\$100 - \$150K	education
H2 - OEM	188,000	<3 yrs	\$100 - \$150K	
H2 - Transport & Storage	240,000	<3 yrs	\$50K - 100K	
H2 - Project Dev.	175,000	<3 yrs	\$50K - 100K	
Clean steel - OEM	250,000	10+ yrs	\$50K - 100K	
Clean steel - EPC	130,000	<3 yrs	\$50K - 100K	
DAC - Transport & Storage	50,000	10+ yrs	\$50K - 100K	
DAC - EPC	280,000	5 - 10 yrs	\$50K - 100K	
DAC - OEM	30,000	10+ yrs	\$100 - \$150K	
DAC - Project Dev.	50,000	5 - 10 yrs	\$50K - 100K	
SMRs - EPC	390,000	5- 10 yrs	\$50K - 100K	
SMRs - OEM	65,000	10+ yrs	\$50K - 100K	
SMRs - Raw Materials	50,000	10+ yrs	\$100K - 150K	

H.S. Diploma 📕 Bachelor's Degree

1. Battery & powertrain manufacturing

25

Copyright @ 2018 by Boston Consulting Group. All rights reserved.

Tax Base | EVs have highest tax revenue potential due to largest market share

Payroll Tax 🗾 Fed. + State Corporate Tax 🗾 Fed. + State Income Tax

Cumulative Tax Impact

2020 - 2050, \$B (APS Scenario)

EV - OEM	189
EV - Aftersales services	141
EV - Software	62
EV - Battery & powertrain manufacturing	33
LDES - OEM	20
EV - Raw materials	14
Low-carbon H2 - OEM	12
Low-carbon H2 - Transport & Storage	9
Low-carbon H2 - Project Dev.	9
DAC - EPC	9
Clean steel - OEM	6
SMR - EPC	10
Clean steel - EPC	3
DAC - Project Development	2
DAC - Transportation & Storage	3
DAC - OEM	12
SMR - OEM	3
SMR - Raw Materials	2
LDES - O&M Software	<1

Given income taxes make up largest portion of tax revenue growth (~45%) location of jobs will have a large impact on local tax income

1. Sum of FICA and MEDFICA tax rates used as a proxy for payroll tax (15.3%); 2. All values are '20-'50 cumulative tax revenues Note: All numbers are rounded Source: taxfoundation.org

26

Summary enablers to unlock competitive advantage

Additional detail in following slides

Summary demand side enablers

Decrease green premiums: Increase demand by either reducing the cost of the technology or increasing the cost of emitting alternatives

Increase volumes deployed: Increase total technology deployment through direct procurements or deployment targets

Ensure access to export markets: Increase demand for domestic companies' exports by clearing non-tariff barriers

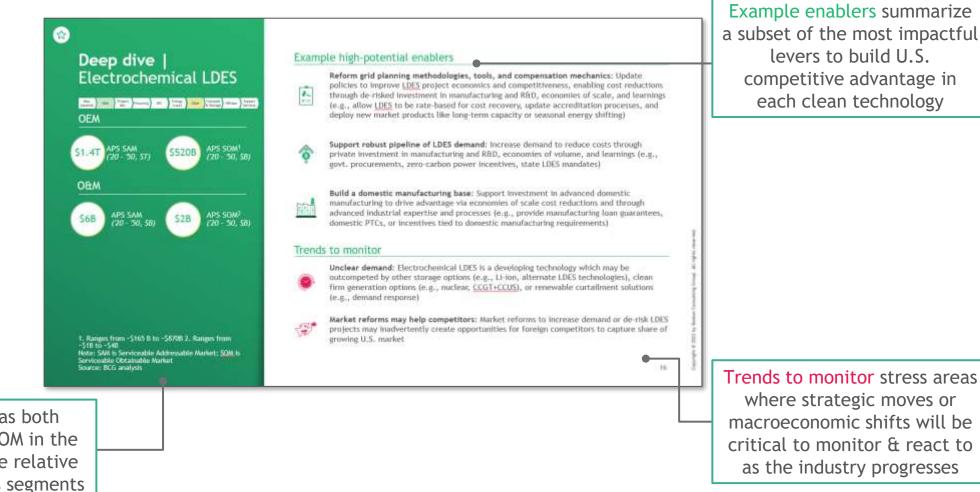
Boost export competitiveness by **driving costs down the learning curve** by increasing total technology deployed

Summary supply side enablers

Streamline deployment: Reduce barriers to deployment to de-risk investment in projects, increasing number of projects deployed and driving costs down the learning curve

De-risk project and infrastructure investment: Increase access to capital for relevant projects / infrastructure, decreasing technology costs

Maintain lead in quality / cost through innovation: Promote R&D to maintain technological competitiveness in product quality and /or cost

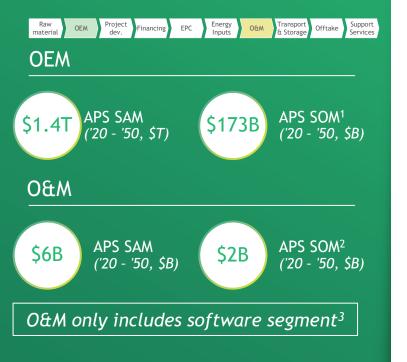

Boost export competitiveness by **building economies of scale** through investment in manufacturing **and maintaining lead in product quality** through R&D

Several actions can enable competitive advantage across the six technologies evaluated

Policy-based Investment-based

Enabler type		Recommended action		
Demand side	Decrease green premium	• Implement policies which incentivize decarbonization or penalize emissions across the U.S. economy (e.g., power, transport, industry) to increase demand for clean technologies and decrease demand for high-carbon substitutes		
	Increase volume deployed	 Encourage technology-specific deployment mandates (similar to state RPS targets) to incentivize technology deployment in the U.S. Leverage U.S. government procurement power through targeted procurement mandates to create initial product demand and de-risk investment in manufacturing 		
	Ensure access to export markets	• Harmonize regulations and taxonomies between domestic and export markets to ensure U.S. products can easily make inroads in priority export markets (e.g., harmonize nuclear licensing regulations, align clean hydrogen or carbon offset definitions)		
Supply side	Streamline deployment	 Streamline project permitting and application processes to de-risk investment and shorten project timelines, improving access to private capital and lowering project costs 		
	De-risk project & infrastructure investment	• De-risk private investment in domestic manufacturing, infrastructure, and projects through low-cost financing and tax incentives to enable U.S. companies to quickly reduce costs via economies of scale		
	Maintain lead in quality / cost through innovation	 Create opportunities to increase research collaboration among national labs, universities, and the private sector to build U.S. leadership in IP creation and R&D for long-term competitiveness Continue to fund research programs to build U.S. leadership in IP creation and R&D for long-term competitiveness Continue to leverage cost-sharing agreements to demonstrate nascent technologies with a focus on commercialization potential to overcome technology risks which deter private investment 		

Context | Overview of Phase 3 findings



Market size, shown as both cumulative SAM and SOM in the APS scenario, show the relative opportunity size across segments

29

All rights reserved

Deep dive | Electrochemical LDES

1. Up to ~\$870B 2. Up to ~\$4B 3.Software was prioritized given the potential for US competitive advantage Note: SAM is Serviceable Addressable Market; SOM is Serviceable Obtainable Market Source: BCG analysis

Example high-potential enablers

Reform grid planning methodologies, tools, and compensation mechanics: Update policies to improve LDES project economics and competitiveness, enabling cost reductions through de-risked investment in manufacturing and R&D, economies of scale, and learnings (e.g., allow LDES to be rate-based for cost recovery, update accreditation processes, and deploy new market products like long-term capacity or seasonal energy shifting)

Support robust pipeline of LDES demand: Increase demand to reduce costs through private investment in manufacturing and R&D, economies of volume, and learnings (e.g., govt. procurements, zero-carbon power incentives, state LDES mandates)

Build a domestic manufacturing base: Support investment in advanced domestic manufacturing to drive advantage via economies of scale cost reductions and through advanced industrial expertise and processes (e.g., provide manufacturing loan guarantees, domestic PTCs, or incentives tied to domestic manufacturing requirements)

Trends to monitor

Unclear demand: Electrochemical LDES is a developing technology which may be outcompeted by other storage options (e.g., Li-ion, alternate LDES technologies), clean firm generation options (e.g., nuclear, CCGT+CCUS), or renewable curtailment solutions (e.g., demand response)

Market reforms may help competitors: Market reforms to increase demand or de-risk LDES projects may inadvertently create opportunities for foreign competitors to capture share of growing U.S. market

Deep dive | Detailed list of potential electrochemical LDES policy actions to support U.S. competitiveness

		Policy-based Investment-based 🐼 Key interventions
	Demand side	Supply side
Technology-wide	 Incentivize zero-carbon firm energy and capacity Reform gid planning methodologies, tools, and compensation mechanics to fully consider range of benefits provided by LDES Update IRP modeling tools to accurately evaluate LDES resources over time to drive demand Allow LDES to be rate-based as a regulated transmission asset for cost recovery to de-risk project financing Update accreditation processes for capacity markets (e.g., Effective Load Carrying Capability) to account for relative advantage of LDES as resource mix changes Deploy new market compensation mechanisms to compensate LDES (long-term capacity contracts, seasonal energy shifting products, etc.) Encourage states to implement LDES mandates Leverage fed. procurement power (e.g., defense facilities, federal power authorities like TVA) Fund research into advanced grid modeling and integration studies to accurately quantify LDES benefits under a zero-carbon grid 	
OEM	 Include domestic content requirements for relevant LDES support mechanisms to incentivize domestic production of LDES components (e.g., ITC, public procurements) 	De-risk private investment in LDES manufacturing facilities via loan guarantees, cost-sharing, and / or tax credit programs
O&M Software	Included in Technology-wide section	• Included in Technology-wide section 3

Deep dive | Electric Vehicles

Battery & Component powertrain manu. Charging infra.

Sales

Aftersales

maint.

1. Up to ~\$2.61 2. Up to ~\$161 3. Up to ~\$21 4. Up to ~\$5.5 Note: SAM is Serviceable Addressable Market; SOM is Serviceable Obtainable Market Source: BCG analysis

Example high-potential enablers

Reduce supply-side investment risk: Launch initiatives that provide federal support to catalyze private-sector investment in critical companies focused on mineral extraction/processing and battery production (e.g., loan guarantees, manufacturing tax credits, local incentives)

Continue to support basic research & development: Invest in R&D across the battery, robotics, autonomy/ML, and semiconductor segments to retain & advance the U.S. innovation lead (e.g., grow funding for critical EV-related areas such as AI/ML, automation and robotics, semiconductors/chip design, and battery chemistry)

Invest in domestic & foreign mineral extraction & processing: Secure access to both domestic and foreign mineral reserves by coordinating public and private investments. Support domestic extraction and processing through streamlined permitting and supply-side support to accelerate growth

Trends to monitor

Growing scale: Investment in Asia, particularly in China, continues to outstrip the U.S. across the upstream value chain, including OEM production, driving a virtuous cycle of reinvestment, scale, automation, and cost reduction

Supply chain integration: As East Asia continues to invest in vertical integration, they may entrench cost advantages that will require prohibitive investment to replicate

Deep dive | Detailed list of potential electric vehicle policy actions to support U.S. competitiveness (I/II)

	Demand side	Supply side	Policy-based Investment-based 🔂 Key interventions
Technology- wide		 next-generation capabilities acr & robotics, and AI/ML & compute Establish initiatives that reduce tax credit across segments, with 	esearch programs, including within DoD, NSF, DoE, ARPA-E, to invest in oss battery chemistry, raw material extraction & innovation, automation ting supply-side investment risk, such as extending the 48C manufacturing of focus on raw materials and battery production dout of a nationwide charger network to support consumer adoption
Raw materials	 Strong near-term production incentives for battery mineral processing & recycling, with clear & gradual phase-down periods, will accelerate domestic industry investment by reducing the premium for U.S. minerals Export tariffs for EoL batteries w/ valuable chemistries (e.g., NMC) would reduce U.S. mineral leakage & support recycling ecosystem in long-term 	 investments in foreign mineral e Standardize & streamline new e stakeholders from Phase 0 to dr for new permit requests that lin coordination program for miner Continue growth of efforts such loan guarantees & construction Opening public lands to extract standards, will help drive supply 	as DoE LPO to support growth in mineral processing capacity through grants on with programs such as the DPA ³ , alongside sufficient environmental growth & reduce permitting hurdles able tariff/trade structures for minerals from other countries to supply
Battery & powertrain manufacturing	• Create near-term production tax credit for battery manufacturing to drive industry scale	 to scaling battery manufacturin Create strong collocation cente industry economics, leveraging drive partnerships Provide tax incentives for batte for next-generation technologie 	DoE, in combination with DPA & federal grants programs, are important g capacity with a focus on U.Sbased entrants & new technologies rs for battery input material & manufacturing capacity to improve favorable localized zoning, permitting, grants, and tax incentives to ry manufacturers using U.Smade cell materials, with larger incentives s to support initial scale for emerging players acturing capacity with cutting-edge technology component to increase

1. Export-Import Bank of the U.S. 2. U.S. International Development Finance Corporation 3. Defense Production Act

Deep dive | Detailed list of potential electric vehicle policy actions to support U.S. competitiveness (II/II)

		Policy-based Investment-based 🟠 Key interventions		
	Demand side	Supply side		
OEM	 Extend existing broad-based, non-discriminatory EV consumer purchase tax credit to boost consumer demand by reducing the EV green premium Shift large-scale domestic federal fleets (e.g., DoD, USPS, DoT) to EVs to provide additional demand baseline 	 Provide public loan guarantees to small-scale EV companies to assist in initial scaling to achieve commercial viability Create retraining & upskilling programs for automotive production & maintenance workers to build EV-capable workforce, including creating EV course materials for junior colleges and sponsoring training programs for high-skill EV-specific capabilities, such as systems engineering, battery engineering, EV powertrain production, and manufacturing automation A dearth of experienced production, automation, and battery engineers may be a constraint in growth, and supporting a skilled workforce with a tailored immigration policy can help bolster the domestic skill pool Help OEMs achieve manufacturing economics by establishing incentives & permitting policies that favor collocation along the supply chain, including across materials, battery, and powertrain production and OEM manufacturing production 		
Software & aftersales services		 Develop policy guidelines for states & municipalities to create non-prohibitive testing environments for early AV deployment Implement proactive, standardized regulation that creates safe, practical, achievable targ for commercial AV applications Expand funding of research & development programs related to next-generation vehicle technologies, including AI, machine learning, sensors, and next-generation chip research Continue & grow broad-based efforts to on-shore semiconductor production to secure access to vital chip supply chains required to run advanced capabilities Supporting scaling domestic chipmaking by providing facility grants/loans & demand-se domestic production incentives for both domestic & foreign manufacturers to grow manufacturing within U.S. Cost sharing programs, analogous to the 48C tax credit, may help accelerate investme in domestic chip manufacturing sites 		

Deep dive | Low-Carbon Hydrogen

to ~\$809B Note: SAM is Serviceable Addressable Market; SOM is Serviceable Obtainable Market Source: BCG analysis

Example high-potential enablers

Work with foreign trading partners to ensure methane-derived H_2 (e.g., blue or turquoise) is acceptable under their net-zero targets: Country-specific policies related to low vs. zero carbon product use and import may restrict U.S. H_2 exports

Scale affordable renewable energy to enable cost-competitiveness of domestic low-carbon H_2 production by streamlining project development and providing renewable energy incentives

Invest in novel transport technologies and repurposed infrastructure for H_2 to achieve significant cost-reductions for transport and enable export/import of H_2 or end products

اعتأدا

Use centralized project development (e.g., U.S. Regional H_2 hubs) to de-risk project development, facilitate cost sharing, and enable industrial-sized applications of emerging H_2 production technology

De-risk H₂ **production** by increasing H₂ demand through government procurement agreements or incentives for uptake/conversion

Trends to monitor

Net-zero targets and policies: More aggressive net-zero targets and policies can increase demand for decarbonization efforts in heavy-emitting industries, and lead to increased H_2 demand

Performance of low-cost Chinese electrolysers: Reliability improvements of low-cost Chinese electrolysers will decrease the ability of the U.S. to compete in OEM with its higher cost and efficacy electrolysers

Deep dive | Detailed list of potential hydrogen policy actions to support U.S. competitiveness (I/II) Policy-based Investment-based & Key interventions

		Toticy based investment based in Rey interventions
	Demand side	Supply side
Technology- wide	 Align on standards and acceptance (e.g., carbon intensity, H₂ taxonomy, certificate of origin, acceptability with emissions targets) for low-/zero- carbon H₂with key import regions (e.g., EU) Establish government procurement goals and agreements for H₂ enduse to create clear signals for low-carbon H₂ demand Incentivize hydrogen (and H₂ derivatives) uptake (e.g., zero-carbon fuel standard, industry-specific abatement costs) Provide financial incentives (e.g., tax credits, grants) to lower H₂ production costs 	
OEM	De-risk OEM innovation, integration, and industrial-scale pilots (e.g., cost-sharing agreements, support industrial-sized PEM & SOE electrolyser integrations)	 Support development expenses and de-risk industrial-scale projects Continue financing novel electrolyser technologies (e.g., DOE research and H₂ shot funding) Create opportunities and processes to increase research collaboration among national labs, universities and private sector Building of gigfactories for scaled electrolyser manufacturing
Project Development		 Streamline and prioritize review/approvals process for zoning, safety, and environmental impact De-risk nascent industrial-scale projects (e.g., low-cost development financing, cost-sharing agreements) Scale affordable, renewable/low-carbon energy development (e.g., streamlined project development for co-located energy facilities, incentives for renewable energy development) Continue investment in centralized infrastructure (e.g., DOE H₂ hubs funded in IIJA)

Deep dive | Detailed list of potential hydrogen policy actions to support U.S. competitiveness (II/II) Investment-based 🚱 Key interventions Policy-based

		Folicy-based investment-based a key interventions
	Demand side	Supply side
Transport & Storage	 Continued increase of hydrogen offtake, especially in hard-to-abate sectors (aviation, steel, etc.), which will increase need for transport/storage infrastructure 	 Incentivize private sector to repurpose natural gas infrastructure Create opportunities to increase collaboration between national labs, universities & private sector on novel transportation IP, like liquid organic hydrogen carriers Continue supporting novel H₂ transport technologies (e.g., LOHCs, ammonia cracking) and infrastructure projects (e.g., IIJA funding for Regional Hydrogen Hubs)
Offtake	Relevant actions are included in Technology-Wide section	

Deep dive | Advanced Nuclear SMRs

1. Up to ~\$11B 2. Up to ~\$55B 3. Up to ~\$65B Note: SAM is Serviceable Addressable Market; SOM is Serviceable Obtainable Market Source: BCG analysis

Example high-potential enablers

Enable needed economies of volume: De-risk private investment in manufacturing facilities to enable domestic players to achieve economies of volume (e.g., loan guarantees, cost sharing programs, tax credits)

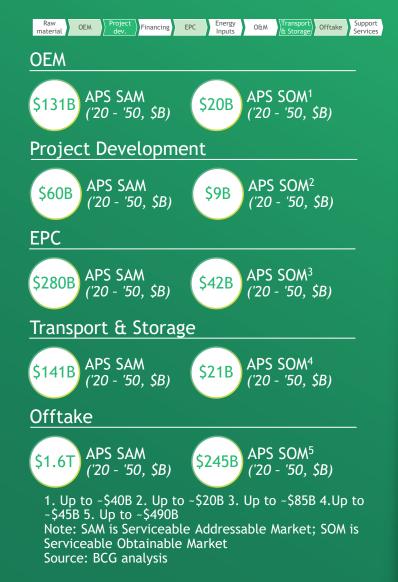
Support robust pipeline of SMR demand: Increase demand to reduce costs through private investment in manufacturing and R&D, economies of volume, and learnings (e.g., govt. procurements, zero-carbon power incentives)

Build domestic HALEU production capacity: Incentivize private investment in U.S. HALEU production capacity to ensure commercial supply for U.S. projects and exports (e.g., govt. purchasing guarantees, loan guarantees, tax credits)

Increase export market access: Harmonize regulations and licensing requirements via NRC engagement with regulators in export markets to ensure U.S. products will meet regulatory requirements abroad

Trends to monitor

DOE HALEU availability program: The DOE is actively crafting a program to enable U.S. HALEU production, though results have yet to be announced


Progress of state-backed competitors: Large state-backed nuclear companies in Russia and China are researching advanced reactor technologies and may soon begin developing export opportunities

Deep dive | Detailed list of potential advanced nuclear SMR policy actions to support U.S. competitiveness

		Policy-based Investment-based 🐼 Key interventions
	Demand side	Supply side
Technology-wide	 Incentivize zero-carbon firm power and capacity Harmonize regulations and licensing requirements with target markets via bilateral NRC engagement Provide low-cost project financing to facilitate exports via U.S. Ex-Im Bank 	 Continue demonstration project cost-sharing programs Launch commercialization-focused cost-sharing programs to prioritize technologies with both commercial and technical potential Streamline domestic permitting, review, and approval timelines for SMR projects Improve and facilitate stakeholder engagement and education to maintain project timelines
Raw materials	Provide govt. purchasing guarantee for HALEU production to de-risk initial investment in enrichment	 De-risk private investment in enrichment facilities via loan guarantees, cost-sharing, and/or tax credits Facilitate partnerships for uranium supply with trusted partners (e.g., Canada, Australia)
OEM	 Facilitate spent fuel waste management programs (e.g., re-import to U.S. or partner with third party) Procure SMR projects for relevant govt. facilities (e.g., national labs, military bases) to incentivize private investment in SMR manufacturing at scale 	 Facilitate NRC licensing process for innovative advanced reactor designs Continue to facilitate research collaboration among National Labs, universities, and the private sector De-risk private investment in SMR manufacturing facilities via loan guarantees, cost-sharing, and / or tax credit programs
EPC		 Streamline permitting process for domestic SMR 39 projects to give domestic EPC firms SMR experience

Deep dive | Direct Air Capture

Example high-potential enablers

Continue to fund centralized domestic project development (e.g., U.S. DAC hubs) that can support diverse DAC technologies to de-risk project development, facilitate cost sharing, and enable industrial-sized applications of next generation OEM technology

Streamline CO₂ storage permitting: prioritize review process permits, environmental impact, and zoning to enable scaled DAC deployment

Scale affordable clean energy: Expedite deployment of renewable or low (bias towards zero)-carbon energy in co-located facilities to meet high DAC energy requirements

Align on offset quality/verification standards with main export partners that use lifecycle analyses and can adequately reflect high quality DAC credits

De-risk DAC deployment/investment in R&D by providing government procurement agreements for DAC credits and publicly funding site selection surveys to identify ideal locations for DAC facilities (incl. societal impacts)

Trends to monitor

Net-zero targets and policies: More aggressive net-zero targets and policies will increase demand for DAC to address hard-to-abate emissions

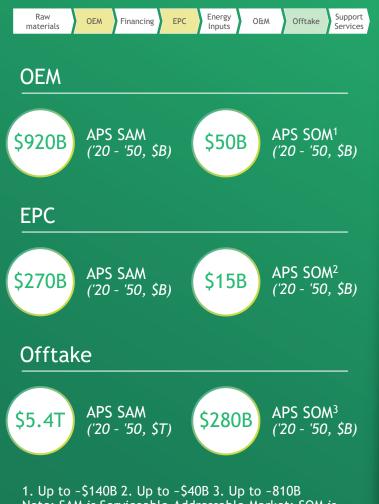
Trade regulations for main export partners: Regulations could restrict the trading of DAC carbon credits across borders (e.g., as in E.U. ETS), limiting DAC offtake market size and export potential

Deep dive | Detailed list of potential DAC policy actions to support U.S. competitiveness (I/II)

	Demand side	Supply side
Technology- wide & Offtake	 Increase offtake demand via incentives & regulations (e.g., scope 3 emissions reporting, tax credits for storage or fuel switching) Establish quality and verification standards for DAC credits (e.g., permanence, resource intensity, etc.) and align on standards with key export partners to ensure offtake and de-risk market for buyers Leverage public procurement for DAC offsets and synfuels/ low carbon DAC products to accelerate cost reductions & scaling Develop or expand carbon credit markets that allow cross border sales (e.g., existing public sector example - California LCFS) 	 Increase DAC offtake creation (offsets & DAC CO2 utilization) via incentives (e.g., tax credits) to reduce costs Invest in low-carbon CO2 utilization technology & provide incentive or low-cost financing for project deployment (e.g., synfuel facility) Continue investment in renewable and low-carbon energy
OEM ¹		 Continue investments in IP R&D for next-generation DAC technology with higher efficacy & energy efficiency (e.g., DoE Funding Program Continue centralized project development (e.g., DAC hubs) that derisk projects for OEMs, enable cost sharing, and enable industrial-sized applications of OEM technology Create opportunities and processes to increase research collaboration among national labs, universities and private sector

Offtake	Relevant actions are included in Technology-Wide section
---------	--

1. OEMs may also function as Project Developers (e.g., Climeworks), so interventions may be cross-applicable for these segments


Deep dive | Detailed list of potential DAC policy actions to support U.S. competitiveness (II/II)

Policy-based Investment-based 🐼 Key interventions

	Demand side	Supply side
Project Development ¹	 Create centralized, standardized RFPs for DAC facilities or OEM inclusion in hub infrastructure to enable competition De-risk offset purchases through government assumption of liability for long-term CO2 storage beyond a required time window 	 Streamline and prioritize review/approvals process for CO2 storage permits, environmental impact, and zoning Continue providing necessary infrastructure (e.g., DAC hubs with energy, compression, etc.) to enable smaller OEMs with diverse technology and needs to deploy their technology at scale to accelerate learnings and cost reductions Publicly-fund site selection surveys to identify ideal locations for DAC facilities, including environmental conditions & societal impact Provide low-cost financing to de-risk nascent commercial projects Invest in domestic renewable/low-carbon energy facility development in ideal DAC locations to enable DAC scaling Provide incentives for companies to invest in using waste heat or infrastructure from existing infrastructure to support co-located DAC
EPC	 Incentivize use of domestic EPC players for DAC facility creation to gain experience and increase competitiveness for exported EPC 	
Transport & Storage		 Continue to allocate funding for DAC hubs and related transport and storage infrastructure Streamline storage permitting and potential revisit existing storage well permitting to retain rigorous environmental standards, while reflecting the low risks for geologic storage; streamlining legal processes accelerates scaling & lowers costs

Deep dive | Clean Steel

Note: SAM is Serviceable Addressable Market; SOM is Serviceable Obtainable Market Source: BCG analysis

Example high-potential enablers

Expand demand-side support: Incentivize domestic clean steel offtake (e.g., subsidies for carbon capture & sequestration, carbon border adjustment), building on the lower carbon intensity of U.S. steel production today

Stimulate demand with federal procurement: Use federal contracts to jumpstart the clean steel industry, while streamlining the contracting process to enable new entrants to compete

Align on standardized, public carbon accounting with domestic steel producers and export partners to certify steel production emissions intensity

Invest in R&D and scaling of CCUS: Fund CCUS R&D and de-risk commercialscale deployment to maintain the small lead by the U.S. today and prevent other nations from leapfrogging U.S. and taking market share

Trends to monitor

Increased policy momentum: Regions such as Canada and the E.U. are leading in steel decarbonization policy, which may rapidly accelerate the growth of clean steelmaking players in those nations and enable domestic players to replace U.S. imports

Deep dive | Detailed list of potential clean steel policy actions to support U.S. competitiveness

	Demand side	Supply side	Policy-based Investment-based 🔂 Key interventions
Technology- wide	 Incentivize U.S. clean steel offtake by imposing demand-side border adjustment/tariffs (U.S. steel industry has low relative carbon intensity). A carbon tariff of ~\$80-110/ton would bring existing clean steelmaking methods including DRI-EAF w/ CCUS to commercial viability and accelerate commercial scaling of next-generation methods such as 100% hydrogen-based DRI Leverage department-level federal procurement (e.g., DoD) to provide demand baseline through regulations such as a minimum % clean steel requirement in contracts 	• Work in par supply	allel with grid-focused incentives to decarbonize electricity
OEM	Incentivize investment in installation of CCUS systems (e.g., subsidies, expansion of existing 45Q tax credit)	 transitioning Support innomarket, succession (e.g., grants De-risk stee 	ntee programs can assist smaller steelmakers with g to carbon-capture and DRI-EAF based steelmaking ovation of emerging steelmaking technologies in the domestic h as molten oxide electrolysis and 100% hydrogen-based DRI s & loan guarantee programs) Imaking facility investment in CCUS integration (e.g., cost grams, renewed 48C manufacturing subsidy)
EPC		buildout ofContinue fuCarbonSAFEContinue bu	vildout of centralized project hubs (e.g., U.Sbased hydrogen ponsor steelmaker collocation to support pilot hydrogen-based
Offtake	 Implement standardized carbon-tracking mechanism to monitor & certify carbon intensity of steel production, both domestic & imported (as relevant and practical in CBAM scenario) Incentivize uptake of clean steel (e.g., government cost-sharing for companies sourcing clean steel) 	acceptance	standardized documentation (e.g., emissions intensity) & of clean steelmaking within federal codes for broader set of 44

Technology-specific findings

LDES

Electrochemical LDES | Definition of each segment across value chain

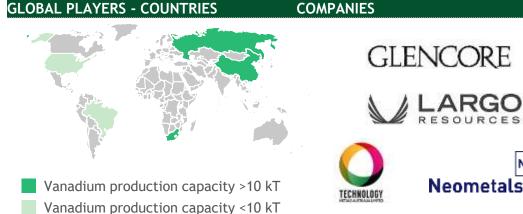
Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations/ Maintenance	Transport & Storage	Offtake
Mining and refining of raw materials for: Electrolytes (Vanadium, Bromine, Zinc, Iron) Battery cells (plastics, metal containers, flow membrane, etc.) Balance of plant (metals, wiring, etc.)	R&D: Significant R&D is ongoing to further refine LDES technologies Component manufacturing: Assembly of component pieces (e.g., piping, pumps, refined electrolytes, etc.) Battery cell manufacturing: Assembly of battery cells without balance of plant yet included Final manufacturing: At scale, includes manufacturing of final standardized DC battery packs / systems	Development includes: • Origination • Site selection • Permitting • PPA structuring • Inter-connection queue • Insurance / project guarantee May be developed in tandem with a renewable project or standalone Customers may be utilities, renewable developers, corporate clients, or industrial users	Developer typically arranges project financing Financing is often difficult as storage revenue streams are difficult to model and are evolving	 EPC includes: Final site engineering On-site DC battery pack installation Final AC inter- connection and testing EPC process may be done in tandem with a paired renewable project or can be standalone 	Operations: Charging / discharging is typically run by software which informs how LDES should bid into the market. Optimized software is key to fully capturing the value stack of a LDES project Maintenance: Includes testing electrolyte tanks for leaks or imbalances, maintaining pumps, and measuring capacity degradation. Predictive maintenance & monitoring tools can reduce O&M costs	Completed battery packs can be transported using conventional rail / truck / shipping Transport of electrons is provided by new / existing transmission lines (likely to site in areas with transmission access)	Stored power is injected into the bulk electric system, local microgrid, or as behind-the-meter storage LDES can provide multiple sources of value in electricity markets, however current market mechanisms do not fully recognize and compensate LDES for all value streams

Electrochemical LDES | OEM and O&M present key opportunities to build durable competitive advantage in LDES through IP

Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations/ Maintenance	Transport & Storage	Offtake
J.S. Serviceable A	ddressable Market (cu	mulative 2020 - 205	0 under APS, \$B - agr	nostic of LDES techno	logy)		
\$550 - 675B	\$1,200 - 1,500B	\$15 - 20B	\$40 - 50B	\$1,200 - 1,400B	\$60 - 70B	N/A	N/A
Competitive Advan	itage						
While highly concentrated in a mall number of countries, electrolyte raw naterials are ypically easily obtained in global narkets	LDES OEM presents an excellent opportunity to develop durable advantage in IP, as the tech is still nascent	While still early, existing utility- scale developers may expand into LDES development, leveraging development experience and capabilities	While project financing access is limited today, as tech risk is reduced & revenue streams are solidified financing will be accessible in traditional markets	While LDES EPC requires technical skills, it is unlikely to provide durable competitive advantage and will likely be local/regional in nature	LDES energy mgmt. system (EMS) software creates a strong opportunity for durable competitive advantage given IP needs and ease of export	A lack of robust transmission infrastructure drives need for additional domestic LDES capacity, driving industry growth	Govt. & regulators can accelerate domestic LDES growth via favorable market mechanisms which fully compensate LDES for services provided
ocietal / socio-eco	onomic impact (peak	U.S. job-years create	ed 2020 - 2050)				
190K - 230K new domestic job-years	310K - 400K new domestic job-years	10K - 20K new domestic job-years	10K - 20K new domestic job-years	630K - 775K new domestic job-years	40K - 55K new domestic job-years	N/A	N/A

Offtake

Support Services


N/A

Electrochemical LDES | Raw materials & inputs

DESCRIPTION OF TECHNOLOGY

Raw materials & inputs for LDES include the battery electrolytes (vanadium, zinc, and bromine), electrodes (e.g., iron), and additional components which make up the balance of plant (e.g., plastics, metals, wiring, etc.). Most inputs, with the exception of vanadium, are widely available and relatively low-cost

\$550 - 675B	MARKET DYNAMICS						
		2020	2030	2040	2050		
Cumulative APS US SAM	US SAM (\$B, APS)	-	\$5 - 10	\$50 - 60	\$10 - 20		
(\$B, '20-50)	Margin (%)	-	5 - 15%	5 - 15%	5 - 15%		

VALUE PROPOSITION

Despite the concentration of several critical inputs (such as iron, zinc, and vanadium), raw materials are unlikely provide significant value, as most of the critical LDES inputs are easily acquired via global commodity markets. This ease of access inhibits developing a durable competitive advantage

Project

OFM

EVALUATION

Market

Competitive Advantage

Societal Impact

Operations/

Medium

EPC

Financing

High

Transport & Storage

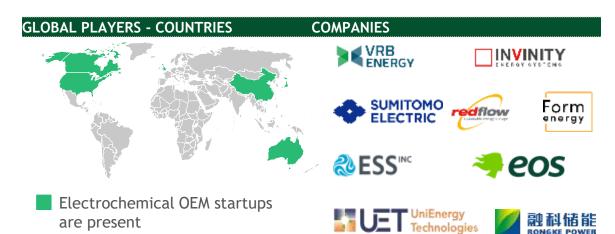
Low

COMPETITIVE ADVANTAGES The production of a majority of critical LDES inputs (e.g., vanadium, zinc, bromine, etc.) are highly concentrated in a small number of countries. However, all inputs are easily obtained in global commodity markets, Input material availability reducing the potential competitive & concentration advantage upside Vanadium has undergone a supply crunch in recent years, driving up the price in global commodity markets, however vanadium is still easily obtained via global markets

Raw materials & OEM Project Inputs Development Financing EPC Operations/ Maintenance Officate Officate Support

High Medium

N/A


Low

Electrochemical LDES | OEM

DESCRIPTION OF TECHNOLOGY

LDES OEM consists of both the manufacturing of battery cells as well as the final production of complete power blocks for on-site installation. While still a nascent area with many smaller players, significant cost reductions are expected in the OEM space as production capacity increases and economies of scale are achieved

<u><u><u></u></u></u>	MARKET DYNAMICS						
\$1,200-1,500B Cumulative APS		2020	2030	2040	2050		
US SAM	US SAM (\$B, APS)	-	\$20 - 30B	\$100 - 110B	\$25 - 35B		
(\$B, '20-50)	Margin (%)	-	10 - 15%	10 - 15%	10 - 15%		

VALUE PROPOSITION

OEM presents a clear opportunity to build durable competitive advantage in a high-value area, particularly around IP for new and emerging technologies. As IP is developed and refined, supportive policies to scale production and capture economies of scale can provide an early advantage for domestic players as well

EVALUATIONMarketCompetitive AdvantageSocietal Impact

COMPETITIVE ADVANTAGES		
Existing regulatory env. supportiveness	Multiple countries are current directly subsidizing R&D for LDES technologies (e.g., \$1.16B Energy Storage Grand Challenge fund in U.S., £68M Longer Duration Energy Storage Demonstration competition in the U.K.) and / or providing indirect incentives (e.g., tax credits)	Н
IP & relevant technical expertise availability	Electrochemical LDES technology is still being developed and refined, with large potential competitive advantage for players which optimize the underlying technology and manufacturing process. ~20 companies are currently developing >10 specific technologies, creating potential for significant IP advantage	Н
Financing access	Early LDES OEM players are successfully securing initial financing from niche market players such as VCs (e.g., Softbank) and early- stage startup investors. Some govt. subsidies are also available to fund R&D and technology demonstration projects	M

Copyright © 2018 by Boston Consulting Group. All rights reserved

Low

N/A

Raw materials & DEM Project Financing EPC Operations/ Transport & Offtake Support inputs

Medium

High

Electrochemical LDES | Project Development

DESCRIPTION OF TECHNOLOGY

While LDES project development is driven by OEM players today, as the industry matures this may shift to be more similar to Li-ion development where standalone development companies drive projects and select from a range of technology providers based on project needs. LDES projects may be developed paired with renewables or as a standalone asset

C4E 200	MARKET DYNAMICS				
\$15 - 20B Cumulative APS US SAM		2020	2030	2040	2050
	US SAM (\$B, APS)	-	<\$1B	\$1 - 2B	<\$1B
(\$B, '20-50)	Margin (%)	-	10 - 15%	10 - 15%	10 - 15%

VALUE PROPOSITION

As LDES matures project development is expected to shift to a model similar to Li-ion, where standalone developers integrate OEM-provided technologies into their projects. The robust existing set of players (e.g., Invenergy, NextEra, etc.) may expand existing competitive advantage into the LDES space

EVALUATION Market Competitive Advantage Societal Impact

COMPETITIVE ADVANTAGES		
Trained/skilled labor force availability	Detailed understanding of regional power markets and permitting processes are required to successfully develop utility-scale LDES projects	M
Market ecosystem maturity	Development is largely done at the national or regional level, however some renewable development players (e.g., EDF, Invenergy, etc.) have begun to expand globally	Μ
Providers / supplier concentration	While there are several established leading renewable and storage developers (e.g., NextEra, Invenergy, etc.) the market as a whole is relatively fragmented, with the top five players owning <30% of the U.S. market ¹	L
Relevant infrastructure potential	Markets with insufficient transmission networks, such as the U.S., are expected to spur the growth of LDES deployment, creating potential for a more robust domestic market than other countries	L

N/A

Low

Raw Barwe Ba

Medium

High

Electrochemical LDES | Financing

DESCRIPTION OF TECHNOLOGY

Financing LDES projects can be challenging, both due to technology risk and difficulties accurately projecting project cash flows for the complicated storage value stack. However, emerging offtake models such as a "build and flip" to utility rate base or contracted tolling agreements can provide dependable cash flows which support project financing

¢40 E00	MARKET DYNAMICS				
\$40 - 50B		2020	2030	2040	2050
Cumulative APS US SAM	US SAM (\$B, APS)	-	<\$1B	\$3 - 4B	\$1 - 2B
(\$B, '20-50)	Margin (%)	-	5 - 10%	5 - 10%	5 - 10%

GLOBAL PLAYERS - COUNTRIES	COMPANIES
Not applicable	
Financing is largely dependent on ultimate customer and is not limited to specific geographies	Arcelor Mittal

	PROPOSITION	
ALUE	FRUPUSITION	

Aside from macroeconomic factors which give specific countries competitive advantage in cost-effective financing, there are limited avenues to generate competitive advantage for LDES project financing. The existing U.S. ITC provides limited advantage near term, however as the ITC steps down this will diminish

EVALUATION Market Competitive Advantage Societal Impact

Existing environmental regulatory support	Specific situations, such as LDES paired with solar/wind, may quality for the U.S. ITC and enable tax equity project financing	1
Financing access	While access to financing has been an obstacle to storage project development, offtake models which create dependable project cash flows can reduce this difficulty. This is largely true for utility customers, who may purchase and rate base LDES assets outright using balance sheet financing, or who may opt for a fixed \$ / kW / month tolling agreement recovered from ratepayers. Both structures provide certainty to financiers of project cash flows	
	Technology and project risks may still complicate project financing and may limit the ability of utility customers to get regulatory approval for large projects. As the technology matures, however, this difficulty should subside	

Raw materials û inputs OEM Project Development Financing EPC Operations/ Maintenance Transport û Storage Offtake Support Services

High Medium Low

N/A

Electrochemical LDES | EPC

DESCRIPTION OF TECHNOLOGY

LDES EPC involves final on-site construction and AC interconnection of factory-produced DC battery packs. Sites may be standalone storage or paired with renewable projects, with either a common or separate EPC player. EPCs will often act as "integrators", combining the DC battery pack with other components for a functioning AC battery storage system

¢4 200 4 400	MARKET DYNAMICS					
S1,200 - 1,400 Cumulative APS US SAM		2020	2030	2040	2050	
	US SAM (\$B, APS)	-	\$10 - 20B	\$110 - 130B	\$30 - 40B	
(\$B, '20-50)	Margin (%) ¹	-	5 - 8%	5 - 8%	5 - 8%	

GLOBAL PLAYERS - COUNTRIES	COMPANIES	
<i>Not applicable</i> OEMs typically partner with local/regional players as needed	BLACK & VEATCH BURNS MEDONNELL	SIEMEN

VALUE PROPOSITION

S

LDES EPC is unlikely to provide opportunity for durable competitive advantage, as the engineering skills/capabilities needed are similar to what many existing players possess today. Further, the construction element of EPC is typically highly local in nature, limiting any additional advantage there

EVALUATION

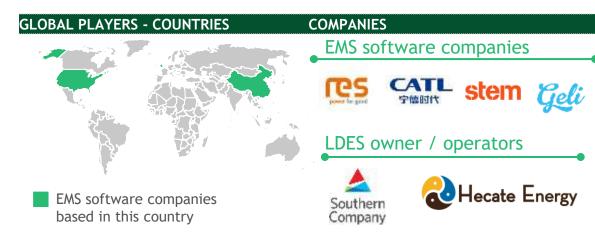
Market Competitive Advantage Societal Impact

COMPETITIVE ADVANTAGES		
Trained/skilled labor force availability	Final LDES project installation may require some certified / specific types of labor (e.g., electricians) though large portions of construction will not (e.g., site preparation, structure assembly, etc.)	M
Pricing advantage potential	Given high degree of labor, local variations in labor costs can provide some degree of competitive advantage for LDES installation and site preparation. Experienced EPCs may reduce costs by avoiding delays / budget overruns	M

Support Services

N/A

Transport & Storage Offtake


Low

Electrochemical LDES | Operations & Maintenance

DESCRIPTION OF TECHNOLOGY

Similar to other Li-ion storage, LDES will likely be operated by sophisticated energy system mgmt (EMS) software to time charge/discharge cycles to fully capture the value LDES can provide. Maintenance is largely limited to monitoring and repairing both the mechanical and chemical battery components (e.g., electrolyte balances, pumps, electrodes, etc.)

¢(0 70	MARKET DYNAMICS				
\$60 - 70		2020	2030	2040	2050
Cumulative APS US SAM	US SAM (\$B, APS)	-	<1B	\$3 - 4B	\$4 - 5B
(\$B, '20-50)	Margin (%) ¹	-	5 - 15%	5 - 15%	5 - 15%

VALUE PROPOSITION

Operations software presents an opportunity to build IP which can easily be defended and sold/licensed in other markets. The maintenance aspects of O&M are less lucrative and will generally be local in nature, leaving little room for competitive advantage

Project Development

Financing

High

OEM

EVALUATION Competitive Advantage Market

materials &

Societal Impact

Medium

COMPETITIVE ADVANTAGES		
Intellectual Property, technical expertise, and R&D availability	The operations software for battery storage technologies can be quite complex and is key to fully maximizing the asset value. As software, this can be a highly defensible area of IP which is still in the early stages of development. Several standalone battery software players (e.g., Geli) are already participating in the Li-ion space, with potential to expand to LDES as the technology matures as well	н
Trained/skilled labor force availability	O&M for LDES assets will likely require a moderately specialized labor force	Μ
Providers / supplier concentration	While still a highly nascent space, early energy system management software providers such as Geli and Stem appear well- poised to expand services in the increasingly specialized Li-ion storage market	N/A

Offtake

Support Services

Electrochemical LDES | Transport & Storage

DESCRIPTION OF TECHNOLOGY

LDES battery packs can be transported using conventional rail/truck/shipping, as completed packs are often housed in shipping containers. The power discharged by LDES will typically be injected into the grid and transported using bulk electric system highvoltage transmission lines

	MARKET DYNAMICS				
N/A		2020	2030	2040	2050
Cumulative US SAM	Market Size (\$B)		Notar	plicable	
(\$B, '20-50)	Margin (%)	Not applicable			

GLOBAL PLAYERS - COUNTRIES

Source: BCG Analysis

COMPANIES

Not applicable Transmission will be provided by the local utility and/or regional system operator (e.g., ISO/RTO)

VALUE PROPOSITION

Given the large amount of overlap with other industries, there is little direct opportunity related to transport and storage for LDES

Project Development

Financing

EPC

OEM

materials &

Market	Competitive Advantage	Societal Impact
OMPETITIVE ADVANTA	GES	
	Markets with insufficie	ent transmission

55

Operations/ Maintenance

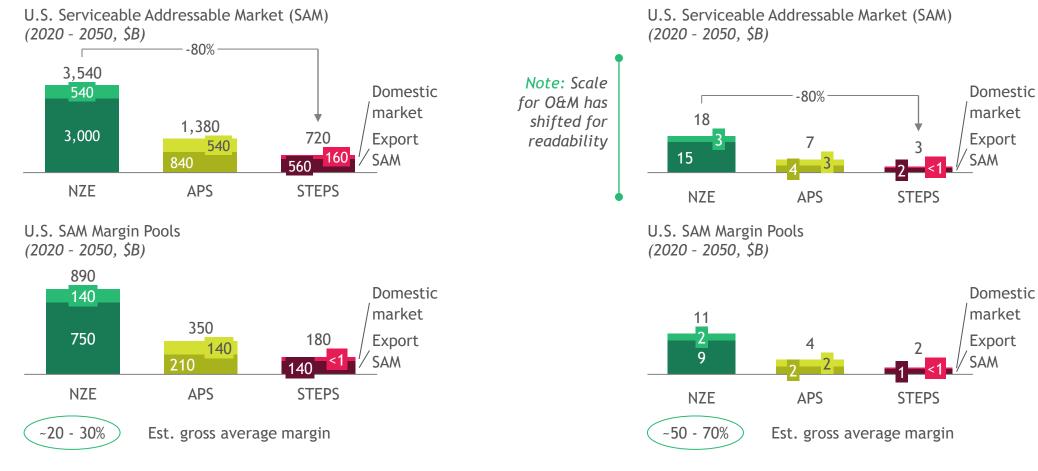
Electrochemical LDES | Offtake

DESCRIPTION OF TECHNOLOGY

Power is charged/discharged into the bulk grid or microgrid. LDES can serve many use cases, including reducing renewable curtailments, deferring transmission buildouts, providing resource adequacy in capacity markets, or providing ancillary services such as inertia, frequency response, and other operating reserves

N/A Cumulative US SAM (\$B, '20-50)	MARKET DYNAMI	CS			
		2020	2030	2040	2050
	Market Size (\$M)	Not applicable			
	Margin (%)		NOT AP	ριιcable	

GLOBAL PLAYERS - COUNTRIES


COMPANIES

Not applicable Highly local nature of electricity offtake means that all EC-LDES will require access to transmission infrastructure or a local microgrid

	High	Medium	Low	N/A
oolicies & market mechan	ors can help nurture a domes isms which ensure that LDES ne full range of services it ca s, etc.)	5 qualifies	for and	fully
EVALUATION Market	Competitive Advantage	Societal	Impact	
COMPETITIVE ADVANT	AGES			
Existing environmental regulatory support	LDES may struggle in c compete with legacy f provide similar service capacity and ancillary policies which assign t externalities to fossil f carbon tax, RPS, or ca would ensure that LDE in such markets. This domestic market whic exports to less-mature	fossil fuel es, such as services. the cost of fuel asset p and tra S is able would nur h may in	assets w s firm Supporti f s, such a de syster to compe rture a ro turn enal	ve M s a M n, ete obust
Market ecosystem matur	While electricity mark for decades, the unde and mechanisms are n compensate LDES for s example, in markets li market exists which co for the resource adequ provides, while in PJM for capacity markets c criteria in place	rlying ma lot always services p ike ERCOT ould comp uacy bene \ LDES ma	rket rules able to f rovided. I no capa pensate L efits it y not qua	s fully For city DES L

OEM offers strongest U.S. market opportunity across scenarios, though export potential falls ~40 - 60% from the Net Zero Emissions scenario

OEM

O&M - Operations Software

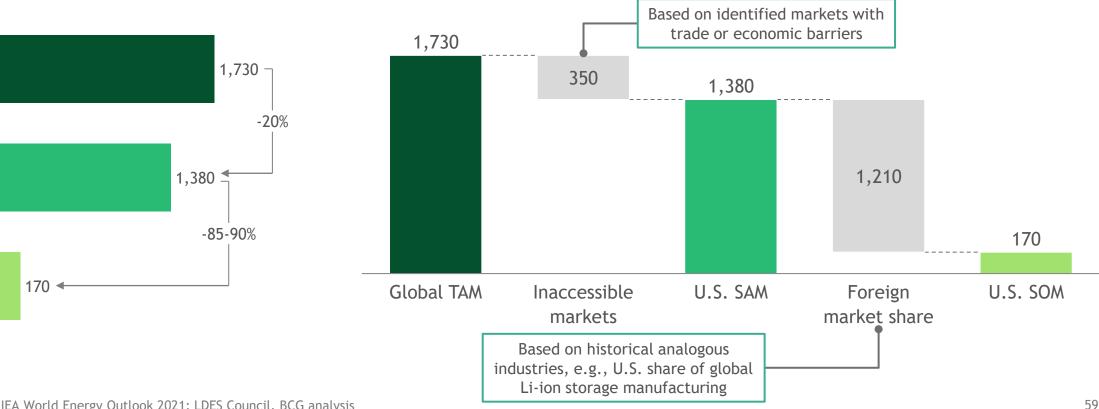
India and E.U. markets are dependable opportunities across scenarios, while the U.S. domestic market also presents large potential

Installed LDES capacity through 2050 by market and scenario (GW)

NZE APS STEPS Non-serviceable markets **Priority markets** Priority markets show consistent potential across scenarios 430 -66% Existing Indian policy targets 450 GW 320 320 310 of renewables by 2030, driving significant growth in STEPS and APS 230 -50% 150 150 140 140 110 75% 80 70 60 40 40 40 10 10 10 5 **United States** India E.U. China Middle East Australia Russia Japan U.S. and E.U. 2050 pledges align APS with NZE, though policy gap to STEPS While a very large market, exporting Japan and Australia creates large downside potential to China presents risk of losing markets are highly durable competitive advantage dependent on scenarios Source: IEA World Energy Outlook 2021; BCG analysis

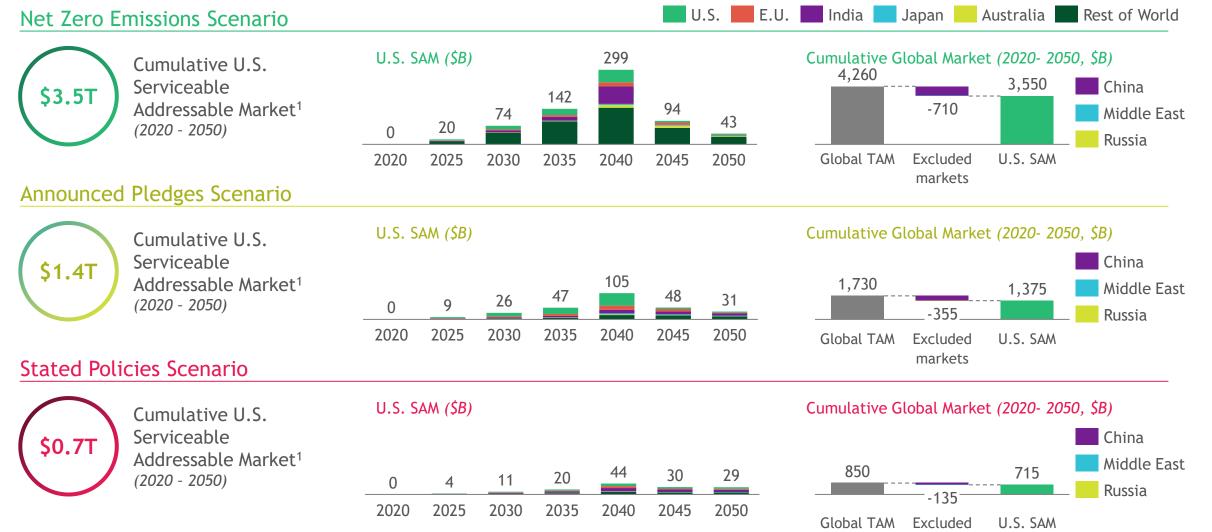
OEM | U.S. share of Li-ion storage manufacturing of ~10 - 15% implies a conservative potential U.S. SOM of ~\$150 - 190B through 2050 for LDES OEM

Walk from TAM to SOM under APS scenario


Cumulative market value, 2020 - 2050 (\$B)

APS market sizing metrics

TAM


SAM

SOM

OEM | LDES OEM market is expected to spike ~2030 - 2040 across scenarios

Spike in NZE is driven by India and RoW, while the U.S. drives the spike in APS

1. Includes both U.S. domestic market and total export SAM


60

markets

Copyright \odot 2018 by Boston Consulting Group. All rights reserved

O&M O&M presents a small but steadily growing market across scenarios

U.S. domestic market comprises significant portion of SAM across scenarios

1. Includes both U.S. domestic market and total export TAM

markets

OEM | U.S.-based companies lead the charge in LDES funding, while Chinese institutes and Japanese and Korean companies lead in research

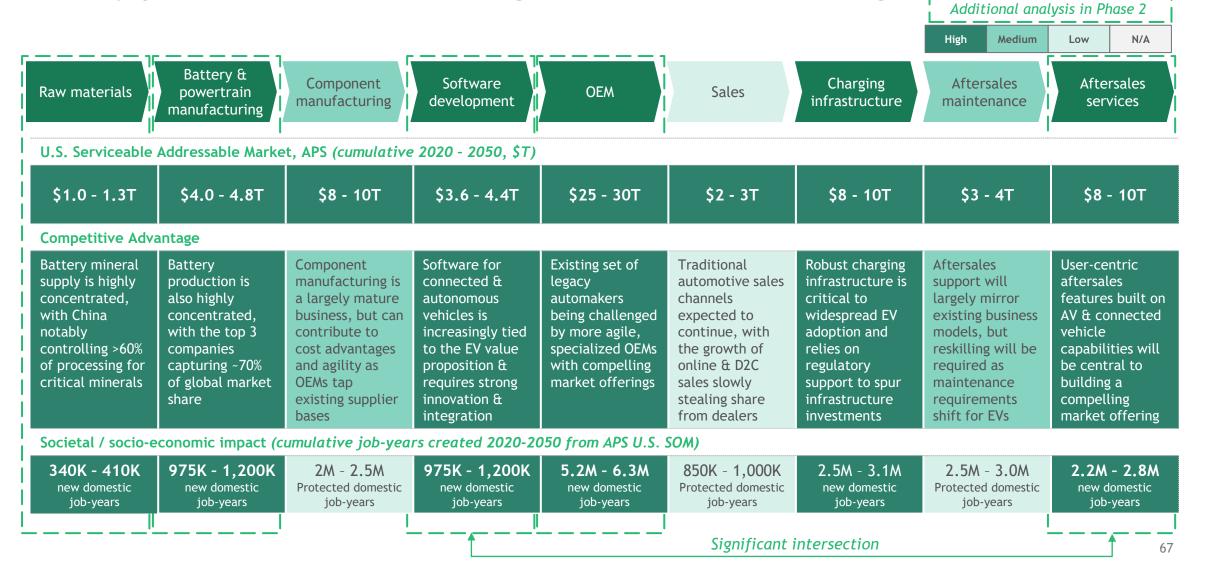
Areas for Competitive Advantage	Ranking	Summary analysis	😭 😑 Key dimension
Raw Material Input Availability	N/A	• Not applicable in segment - key inputs are generally widely available (except for vanadium)	
Intellectual Property & Innovation	Low	 U.S. ranks 4th globally in patent volume in both flow batteries and metal air batteries, significantly beh while slightly trailing Japan Despite gap in patent volume, the U.S. ranks 3rd in the Global Innovation Index (GII), followed by Korea Japan (13th) U.S., S. Korean, and Japanese patent leaders tend to be OEM or advanced manufacturing players (e.g., Lotte Chemical), while Chinese patents are driven by research institutions (Chinese Academy of Science) 	(5 th), China (12 th), and ESS, Sumitomo, LG Chem,
Research & Technical Leadership	Low	• The U.S. lags Chinese research paper publications in absolute volume in both flow batteries and metal a maintains a strong second place in both categories	air batteries, but
Cost Advantage Potential	N/A	Not applicable in segment - inputs are generally global commodities	
Demand / Supply Side Policies	High	 Existing U.S. state-level renewable energy and storage targets (e.g., CA, NY) provide demand-side supp U.S. DoE Energy Storage Grand Challenge seeks to reduce costs of LDES by 90% by 2030 and encourage of LDES technologies. The DoE Long Duration Storage Shot has led to request for \$1.2 B in FY 2022 funding 	
🕸 Market Maturity	High	 U.S. companies maintain a significant lead in investment, with investments in U.Sbased companies ~6 in China, the market with the second-highest investment in domestic companies Relatively concentrated market with 60 - 70 players creates opportunity for U.S. companies to develop 	·
Ecosystems and Infrastructure	High	 U.S. transmission grid creates opportunity for LDES to close transmission gaps to enable high renewable Mixed set of power market regulations across the U.S. vary in degree of support for LDES, though overal opportunity to invest in and finance storage projects 	
Overall ranking		U.S. found to have tenuous competitive advantage potential due to highly mature marked but low activity in the IP / research space	et relative to others

O&M | U.S.-based companies have received significantly larger amounts of funding than companies abroad, creating potential for competitive advantage

Areas for Competitive Advantage	Ranking	Summary analysis 😥 = Key dimension
Raw Material Input Availability	N/A	Not applicable in segment - key inputs are generally widely available (except for vanadium)
Intellectual Property & Innovation	Low	 U.S. ranks 3rd globally in patent volume for Battery Mgmt. Systems (BMS), significantly behind both China and S. Korea Despite gap in patents, the U.S. ranks 3rd in the Global Innovation Index (GII), followed by Korea (5th) and China (12th) Globally, patent leaders tend to be OEM or advanced manufacturing players (e.g., LG Chem, CATL, Samsung)
Research & Technical Leadership	High	• Although China maintains a slight lead over the U.S., both countries are leaders in BMS-related academic literature, with the U.S. holding more than double the number of papers than the third-highest country, India
Cost Advantage Potential	N/A	Not applicable in segment - inputs are largely technical talent
Demand / Supply Side Policies	N/A	• Not applicable in segment - little / no relevant types of support for O&M software systems
Market Maturity	High	 U.S. companies maintain a significant lead in investment, with investments in U.Sbased companies ~9x that of the second-highest market, Switzerland, and ~14x that of China Significant M&A activity indicates a dynamic and de-risked market, though presence of large established players abroad (e.g., LG Chem) may present challenges to emerging U.S. companies
Ecosystems and Infrastructure	High	• Large wholesale power, capacity, and ancillary services markets in the U.S. encourage the need for sophisticated BMS software which can accurately predict and capture value in multiple markets
Overall ranking		U.S. found to have tenuous competitive advantage potential due to highly mature market relative to others, however gap in patent activity and a slight lag in research limits competitive potential

Overview of key assumptions

Assumption	Value	Impact on Calculations	Source	
Total battery and H2-fired generation by market	Varies by year and market	Based on IEA projections, the combined battery and H2-fired generation capacity makes up the base input for electrochemical LDES calculations. This combined figure represents the total storage capacity across both electrochemical and chemical technology groups, which are the two types which are documented by the IEA. These inputs form the base of the LDES modeling and impact all subsequent values, such as	IEA 2021 World Energy Outlook	
		LDES capacity deployed, market value, and potential job growth		
Split of capacity by storage duration	<8 hrs = ~25% 8 - 24 hrs = ~40% >24 hrs = ~35%	These figures are used to split the total storage capacity projections from the IEA into tranches based on estimated durations required. This split is used to inform what proportion of storage would likely be satisfied by Li-ion batteries vs electrochemical LDES (see next row)	LDES Council ¹	
required	required All values reflect 2040+	This split impacts LDES capacity forecasts, which in turn drives market value and job growth		
LDES penetration per storage duration	<8 hrs = 0% 8 - 24 hrs = 50% >24 hrs = 100%	These inputs are used to estimate what proportion of storage capacity per tranche is satisfied by LDES vs Li-ion storage. These values are applied to the total storage capacity forecasted per duration tranche to forecast the LDES capacity deployed, which in turn drives market value and job growth	LDES Council; ¹ expert input	
LDES power and	Power capacity: ~\$1,920/kW (2025) ~\$550/kW (2040+)	These cost estimates are applied to the LDES capacity forecasts to estimate total market	LDES Council ¹	
	Energy capacity: ~\$16/ kWh (2025) ~\$10/kWh (2040+)	value and related job potential per value chain segment		


1. Long Duration Energy Storage Council - Net-zero Power: Long Duration Energy Storage for a Renewable Grid

Electric Vehicles | Definition of each segment across value chain

Raw materials	Battery & powertrain manufacturing	Component manufacturing	Software development	OEM	Sales	Charging infrastructure	Aftersales maintenance	Aftersales services
 Mining or synthesis, refining, and production of raw materials Battery minerals (Li, Co, Ni, Mn, Al, Fe, SiC) Vehicle body/ powertrain (steel, copper, aluminum, rare earths) Battery EoL recycling 	Battery cell manufacture (electrode production, cell assembly & finishing) Battery pack assembly Motor manufacture (e.g., motor winding) Electronic control systems & inverters	Tier 1 (finished parts & assemblies) & 2 (input components) manufacturing of classical components, including interior modules, suspension, body electronics, infotainment & safety systems E/E, ADAS, and AV components Chip & microcontroller production	Tier 1 & OEM development of integrated software stacks to support infotainment, ADAS/AV, data & analytics, car OS, and enablement of aftersales services Out-of-vehicle connected software ecosystem	 Vehicle design & development Integration of supplier components & production/assembly operations Manufacturing site creation, including permitting, development, construction & tool-up Financing growth through internal cashflow, equity/bond sales, VC/private investment, and/or partnerships, sometimes with government support Capital investments (tooling, equipment, etc.) for press, body, paint, and assembly processes Skilled production line labor to drive operations 	EV unit sales to consumers through traditional wholesaling & franchised dealerships, OEM-owned agency sales centers, or non- dealership D2C sales Consumer purchase financing & leasing	Site selection & ownership Grid connection & electricity delivery Equipment supply, including development & manufacture Insurance & financing Installation, repair, and maintenance of field units Operation, including IT back-end/billing	Traditional after- market support including vehicle servicing, parts sales, and repair	Connected service offerings (OTA software & features, add- on services, data collection & analytics, ADAS, connectivity) Charging support services Mobility-as-a- service, including OEM ride-sharing

Electric Vehicles | Opportunity to drive advantage by securing raw material & battery production, differentiating OEM & software offerings

Aftersales maintenance

N/A

Aftersales services

Charging

Sales

Low

Electric Vehicles | Raw materials

DESCRIPTION OF TECHNOLOGY

Source: BCG Analysis

Key raw materials for EVs include 'legacy' metals such as iron, aluminum, and copper, largely used for the automotive body & propulsion system as well as the extraction & refining of large amounts of minerals for lithium-ion battery production, including lithium, cobalt, graphite, nickel, and manganese

\$1.0 - 1.3T Cumulative APS US SAM (\$T, '20-50)	MARKET DYNAMICS					
		2020	2030	2040	2050	
	US SAM (\$B, APS)	\$4 - 5B	\$35 - 45B	\$45 - 55B	\$55 - 75B	
	Margin (%)	5 - 35%	5 - 35%	5 - 35%	5 - 35%	

Preliminary estimate, highly variable given metal & shifting commodity prices
 2. Wood Mackenzie, J.P. Morgan, IHS Markit, World Steel Association, USGS, Macquarie

VALUE PROPOSITION

Production for critical battery minerals is concentrated in nations such as China or the DRC and poses a point-of-failure risk. Local, reliable access to minerals & processing is a major contributor to upstream supply chain cost competitiveness & stability. Additionally, countries driving innovation in extraction, refining, and recycling can have an outsized impact without controlling mining directly

Component manufacturing Software developmen

High

OEM

Medium

Battery & powertrain

EVALUATION Market	Competitive Advantage	Societal Impact	
COMPETITIVE ADVANTAG	ES		
Input material availability & concentration		, ~50% of Australian	н
Providers/supplier concentration	Mineral production is h with one country domi supply of lithium (Aust	nating ~50%+ of global	Н
Existing regulatory env. supportiveness	Companies, particular state-supported, and g beneficial environmen contribute to domestic supply may also make attractive. Policy to re within the US may also	overnment focus on tal policies & subsidies growth. Domestic EVs more politically etain degraded cells	M
Intellectual Property, technical expertise, and R&D availability	Continued innovation i & refinement as well a can drive down cost &	s battery recycling	Μ
Cost advantage potential	Minerals are globally to and access to different proximity to source, cl cost labor & operation	tiators such as neap power, and low-	L

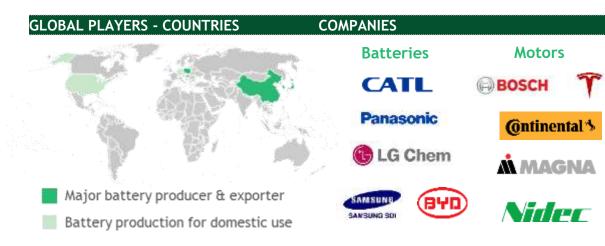
Aftersales maintenance

N/A

Charging nfrastructure

Sales

Low


Aftersales services

Electric Vehicles | Battery & powertrain manufacturing

DESCRIPTION OF TECHNOLOGY

Manufacturing of the powertrain, including the battery pack, motor, and electronic control systems, is the critical differentiator in EVs. Electrode production, cell assembly & finishing, motor winding & assembly, and the production of high-current electronic control systems & inverters are central to successfully deploying vehicles with increasing range & performance

\$4.0 - 4.8T Cumulative APS US SAM (\$T, '20-50)	MARKET DYNAMICS					
		2020	2030	2040	2050	
	US SAM (\$B, APS)			\$160 - 180	\$200 - 220	
	Margin (%)	5 - 10%	5 - 10%	5 - 10%	5 - 10%	

VALUE				N
VALU	-	UPU	SIII	UN

Cost reduction in battery manufacturing is key to EVs. Similarly important is the ability to manufacture extremely safe, reliable batteries at scale, an area with potential for US excellence. Production is concentrated in East Asia and ensuring access to batteries should be a domestic priority. Gov't support & incentives are needed to achieve the scale req'd to compete with cheaper foreign alternatives

omponent inufacturing Software developmen

High

OEM

Medium

EVALUATION			
Market	Competitive Advantage	Societal Impact	
COMPETITIVE ADVANT	AGES		
Intellectual Property, technical expertise, and R&D availability	New battery chemistry innov differentiated products with density. Strong research inve can advantage countries & c innovations often take time impact. Manufacturing excel produce extremely reliable,	higher energy estment & programs ompanies, but to scale & deliver llence is required to	M
Input material availability & concentration	Proximity to raw materials s products can drive supply ch reduce overall costs		M
Providers/supplier concentration	Battery production is highly the top 3 companies (CATL, capturing ~70% of global man powertrain production is mo many OEMs still rely on man	LG, Panasonic) rket share. Motor/ re diversified, but	н
Cost advantage potential	EV batteries are increasingly differentiated, and access to labor & operations can boost	o savings such low-cost	M
Existing environmental regulatory support	Relevant companies are ofte and gov't focus on permitting contribute to domestic prod	g & market policies	L

N/A

Low

Medium

High

Electric Vehicles | Component manufacturing

DESCRIPTION OF TECHNOLOGY

Traditional component manufacturing of standard automotive parts & assemblies applicable to both ICE & EV platforms. Tier 1 (finished parts or assemblies) & 2 (input components) suppliers produce an array of components including seats & control systems, suspension, body electronics & E/E, infotainment & safety systems including chip & microcontroller production

\$8 - 10T Cumulative APS US SAM (\$T, '20-50)	MARKET DYNAMICS					
		2020	2030	2040	2050	
	US SAM (\$B, APS)			\$350 - 370	\$520 - 530	
	Margin (%)	4 - 6%	4 - 6%	4 - 6%	4 - 6%	

Significant concentration of EV-relevant automotive component suppliers

CORVORA	TIGN HYDRDHI
NP	BOSCH
DRIDCESTONE	Ontinental *
Ē	MAGNA

Ð

VALUE PROPOSITION

The ability to produce or procure 'legacy' automotive components cheaply & reliably can serve as a unique differentiator in speed-to-market for EVs due to shared BOMs for major assemblies. OEMs and startups are leveraging the significant existing supply bases in major automotive nations such as the US and Germany to reduce start-up costs and accelerate efforts to scale EVs

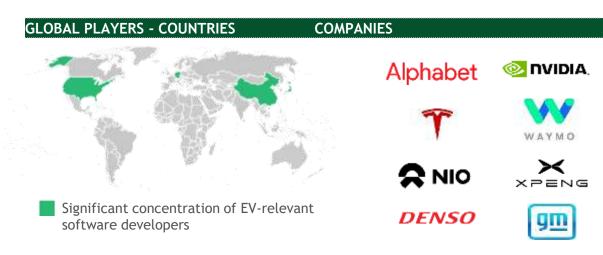
VALUATION Market	Competitive Advantage	Societal Impact	
COMPETITIVE ADVANT	AGES		
Intellectual Property, technical expertise, and R&D availability	Technology across market se mature, with minimal mover or R&D innovations	· · ·	L
Market ecosystem maturity	Market for legacy components is mature with extensive existing supplier & trade relations laying the groundwork for similar players to shift into EVs, but emerging sensor & computing hardware markets still developing		M
Providers/supplier concentration	The landscape of traditional automotive supplie is well-populated & major players exist in most significant auto-producing nations. Many companies are launching products targeting EV stay competitive in a changing market		L
Trained/skilled labor force availability			M

N/A

Low

 Raw povertrails
 Battery & povertrails
 Component manufacturing development
 Software development
 OEM
 Sales
 Charging Infrastructure
 Aftersales services

Medium


High

Electric Vehicles | Software development

DESCRIPTION OF TECHNOLOGY

Development and integration of software stacks to support car systems and features including infotainment, ADAS/AV, performance/maintenance data & analytics, car OS, and enablement of aftersales services. Performed by both Tier 1 suppliers and & in-house OEM teams, depending on system & OEM

\$3.6 - 4.4T Cumulative APS US SAM (\$T, '20-50)	MARKET DYNAMICS					
		2020	2030	2040	2050	
	US SAM (\$B, APS)			\$170 - 180	\$240 - 250	
	Margin (%)	10 - 20%	10 - 20%	10 - 20%	10 - 20%	

VALUE PROPOSITION Advanced software including connected vehicles and ADAS/AV features are becoming increasingly included in the EV consumer value proposition. Innovative, well-integrated platforms can strongly differentiate product offerings, and companies & countries with robust & agile software capabilities are better positioned to capture share in the overall EV market segment EVALUATION Competitive Advantage Market Societal Impact COMPETITIVE ADVANTAGES While more legacy systems such as infotainment are mature, there is major innovation across the Intellectual Property, connected car and autonomous driving landscape. technical expertise, Development in the still-nascent AV space, where and R&D availability the US hosts the notable leaders, has the potential to unlock significant competitive advantage Financing today provided by industry & niche players **Financing access** such as VCs & OEM investments for most development in the space Regulatory support is important to create suitable technology testing environments, and to ensure Existing uniform requirements that simplify market entry. environmental Gov't investment is also important to protecting a regulatory support technical lead amidst foreign initiatives to grow AI/ML & autonomous capabilities, notably in China Highly specialized programming, AI/ML, and integration engineering skills are required for success. Traditional OEMs are not structured to be Trained/skilled labor agile enough to excel in emerging markets distinct force availability from their current core competencies, and will find

transitioning from a legacy mechanical eng. focus to

building such teams challenging

les Charging Aftersales Aftersales services

High Medium Low

N/A

Electric Vehicles | OEM

DESCRIPTION OF TECHNOLOGY

The core EV product is designed & built by the OEM, as it coordinates technical operations, supplier & component integration, as well as facility standup, tooling, training, and production. Robust technical teams and capital investments are required, as OEMs also coordinate financing through cashflow & private/public market fundraising

COF DOT	MARKET DYNAMICS					
\$25 - 30T Cumulative APS US SAM (\$T, '20-50)		2020	2030	2040	2050	
	US SAM (\$B, APS)	\$85 - 90		\$1100 - 1200		
	Margin (%)	<5%	<5%	<5%	<5%	

VALUE PROPOSITION

Success in EVs relies on a compelling OEM market offering, the ability to manufacture at a competitive price point, and the capacity to rapidly scale to fulfill demand. EV production is the most capital-intensive and technically demanding component of the value chain, dependent on expertise and financing to drive growth, as well as continued manufacturing innovations to cut costs

Component manufacturing Software developmen

Battery & powertrain manufacturing

Raw materials

EVALUATION			
Market	Competitive Advantage	Societal Impact	
COMPETITIVE ADVANT	AGES		
Intellectual Property, technical expertise, and R&D availability	While EV technology is rapidly m battery, electrical control system still give OEMs a differentiating of Strong IP & technical teams are n competitive product, and technic expected to continue as OEMs co performance, manufacturing, and	n, and powertrain designs competitive advantage. required to design a cal differentiation is mpete on range,	Н
Trained/skilled labor force availability	EVs have lower assembly requirements vs. ICE automobiles, but line labor will need retraining and is still a differentiator in production		M
Existing environmental regulatory support	Government assistance with perr well as subsidies & incentives for interest loans, and tax benefits, fostering emerging OEMs	EV purchasing, low-	н
Financing access	Financing in EVs is primarily driven by the OEM themselves, with established legacy players raising funds through cash flow/bond sales, and emerging OEMs relying on venture capital and private equity to scale production in the capital-intensive auto production segment		M
Relevant infrastructure potential	Existing auto manufacturing facil support EV production, but share stamping can be directly applied	ed processes such as	M

72

Copyright © 2018 by Boston Consulting Group. All rights reserved.

 Raw materials
 Battery £ powertrain manufacturing
 Component manufacturing
 Software development
 OEM
 Charging Aftersales Aftersales services

High Medium Low

N/A

Electric Vehicles | Sales

DESCRIPTION OF TECHNOLOGY

EV new car sales to consumers through traditional wholesaling & franchised dealerships, OEMowned agency sales centers, or non-dealership D2C sales, including leasing & consumer purchase financing

¢o ot	MARKET DYNAMICS					
\$2 - 3T		2020	2030	2040	2050	
Cumulative APS US SAM (\$T, '20-50)	US SAM (\$B, APS)	\$10 - 15		\$360 - 440	\$800 - 900	
	Margin (%)	<5%	<5%	<5%	<5%	

GLOBAL PLAYERS - COUNTRIES

COMPANIES

Not applicable

VALUE PROPOSITION

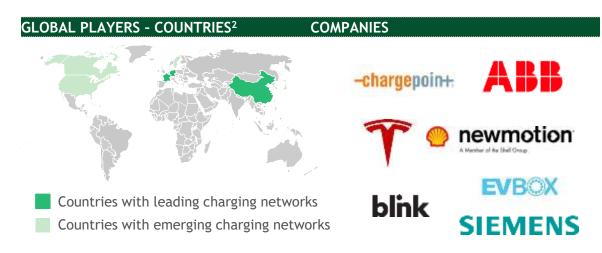
EVs are poised to accelerate shifts in sales channels away from traditional local dealerships to direct-to-consumer and online business models. This asset-lite model, offering the agility & lower costs of direct sales channels, will be critical to success for many newer EV OEMs as legacy brands struggle to manage large dealership networks.

EVALUATION							
Market	Competitive Advantage	Societal Impact					
COMPETITIVE ADVANTA	GES						
Market ecosystem maturity	Car sales today are performer regional dealership networks car sales. Maturity of existin likely temper adoption curve OEM-owned models	s performing most new g sales channels will	L				
Providers / supplier concentration	Market is fragmented with ne controlling a major fraction However, local oligopolies ca group of sellers dominating r	of the market. an exist with a small	L				
Existing environmental regulatory support	Changing federal & state gov or dealer requirements could the growth of online and dire sales, particularly relevant f Additionally, municipal incer transitioning traditional deal can help support the transiti channel	d rapidly accelerate ect-to-consumer car for emerging EV OEMs. ntives & assistance lerships to EV sales	L				

73

N/A

Low


Medium

Electric Vehicles | Charging infrastructure

DESCRIPTION OF TECHNOLOGY

The buildout of both private/in-home and public charging infrastructure is central to enabling the EV transition. Level 3 fast chargers which leverage high voltages (800+ V) to rapidly deliver range will becoming increasingly important as adoption grows, in conjunction secondary enablers such as battery-to-battery systems

CO 40T	MARKET DYNAMICS					
\$8 - 10T		2020	2030	2040	2050	
Cumulative APS US SAM	US SAM (\$B, APS)	\$15 - 20	\$130 - 140	\$160 - 180	\$200 - 220	
(\$T, '20-50)	Margin (%)	10 - 15%	10 - 15%	10 - 15%	10 - 15%	

VALUE PROPOSITION

The availability of chargers, and in particular public fast chargers, will be a differentiating driver in EV adoption. Both the density and speed of charging networks, as well as the strategic placement of chargers in accessible and high-value locations (e.g., shopping malls), will be crucial. Additionally, this requires both grid preparedness & regulatory support that will differentiate markets

High

EVALUATION						
Market	Competitive Advantage	Societal Impact				
COMPETITIVE ADVANTAG	iES					
Existing b environmental t regulatory support r	Direct funding and incentive can help both rapidly accele buildout and drive the grid n to support increased loads. A regulation of connection star universal ports & plug-and-c would help reduce roadblock	rate charging network nodernization required Additionally, ndards, including harge capabilities,				
Relevant r infrastructure N potential t	The robustness & capacity of connections can be a determ number of candidate locatio Notably, modern transforme the large loads required for nuch more common in the E n the US, which has a compa	nining factor in the ns for EV chargers. rs capable of handling fast charging are IU and East Asia than				
Financing access	Funding is still primarily prov t private equity investments of public grants & incentives support	s, with a combination				

74

N/A

Low

Medium

High

Electric Vehicles | Aftersales maintenance

DESCRIPTION OF TECHNOLOGY

Classical aftermarket support for automobiles includes both ongoing & acute (collision) maintenance, which are serviced by a large network of OEM-affiliated and independent auto repair shops. Aftermarket maintenance also serves as a large source of OEM & supplier revenue for replacement parts and consumables

<u>сэ</u> (т	MARKET DYNAMICS					
33 - 41		2020	2030	2040	2050	
Cumulative APS US SAM (\$T, '20-50)	US SAM (\$B, APS)	\$1 - 5	\$70 - 80	\$180 - 220	\$270 - 330	
	Margin (%)	3 - 10%	3 - 10%	3 - 10%	3 - 10%	

GLOBAL PLAYERS - COUNTRIES¹

COMPANIES

Not applicable

VALUE PROPOSITION

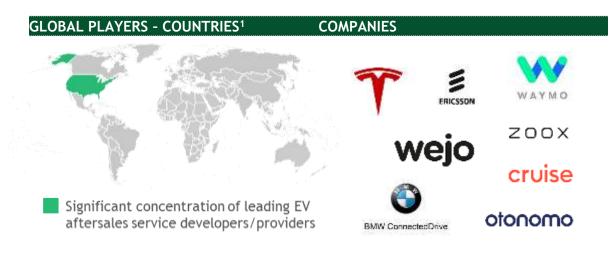
The classic aftermarket maintenance segment will experience a major transformation as EV adoption increases, due to the lower ongoing maintenance requirements of electric powertrains as well as the significant reskilling required to adapt labor pools to the care of new components & systems, including advanced sensor & computing suites. The ability to smoothly execute this transition while maintaining a sufficient aftermarket repair capacity will be important, and likely will be largely supported by OEMs

EVALUATION				
Market	Competitive Advantage	Societal Impact		
COMPETITIVE ADVANT	AGES			
Providers / supplier concentration	The current aftermarket maintenance segment is highly fragmented with a diverse landscape of L independent repair shops			
Trained/skilled labor force availability	Current automotive maintenance labor force will require significant retraining to give it the skills to work on EVs, including ability to work with battery-electric powertrains, sensitive sensors & chips, and new body designs and materials		Μ	

Low

aw Battery & Component Software OEM Sales After and Aftersales maintenance After see

High Medium


N/A

Electric Vehicles | Aftersales services

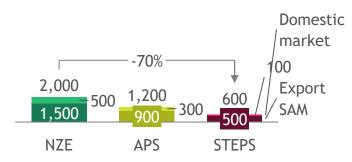
DESCRIPTION OF TECHNOLOGY

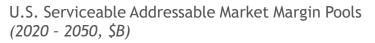
Aftersales services will rapidly expand with the adoption of EVs and parallel growth of connected & autonomous fleets. Vehicle-to-everything (V2X) smart features, vehicle-to-vehicle (V2V) capabilities, fleet connectivity/analytics, car apps & services, as well as autonomous & assisted driving subscriptions & ride-hailing are expected to grow as the segment matures

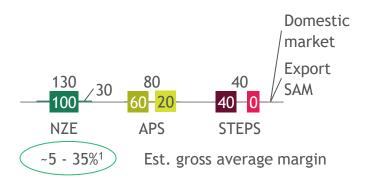
CO 40T	MARKET DYNAMICS					
38 - 101		2020	2030	2040	2050	
Cumulative APS US SAM (\$T, '20-50)	US SAM (\$B, APS)			\$440 - 450	\$550 - 650	
	Margin (%)	5 - 10%	5 - 10%	5 - 10%	5 - 10%	

1. Lease Fetcher, based on both total charger count & ratio of chargers to EV population Source: BCG Analysis

VALUE PROPOSITION

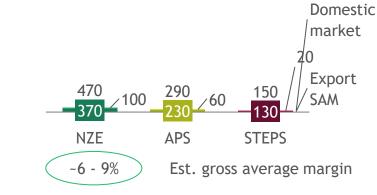

The growth of these services is closely tied to the overall EV expansion as customers expect increasingly connected features from their vehicles. Success in this segment is directly reliant on the software development and, critically, integration capabilities of the OEM & suppliers/partners, and will in turn act as a defining market differentiator amongst EVs


EVALUATION		
Market	Competitive Advantage	Societal Impact
COMPETITIVE ADVANTAC	GES	
Intellectual Property, technical expertise, and R&D availability	While legacy systems such as matured, there is major inno connected car and autonomo Development in the AV space the notable leaders, has the significant competitive advan leaders will experience adva consumer trust & securing O	ovation across the ous driving landscape. e, where the US hosts potential to unlock ntage, and early ntages in building
	Financing today provided pri niche players such as VCs & (
Existing environmental regulatory support	Regulatory support is import technology testing environmo uniform requirements that si Gov't investment is also impo technical lead amidst foreigr AI/ML & autonomous capabil	ents, and to ensure implify market entry. ortant to protecting a n initiatives to grow
Trained/skilled labor force availability	Specialized programming, AI engineering skills are require Traditional OEMs may find tr legacy focus on mechanical e such teams challenging	ed for success. ansitioning from the


Large SAM across market segments and scenarios reflective of massive global automotive demand and significant private & public momentum in electrification

Raw materials

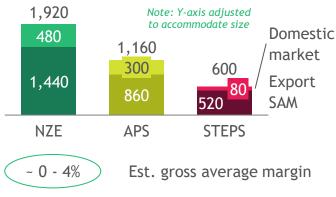
U.S. Serviceable Addressable Market (SAM) (2020 - 2050, \$B)



Battery & powertrain manufacturing

U.S. Serviceable Addressable Market (2020 - 2050, \$B)

U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)

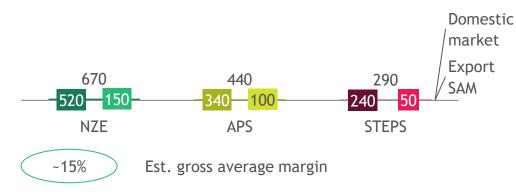


OEM

U.S. Serviceable Addressable Market (2020 - 2050, \$B)

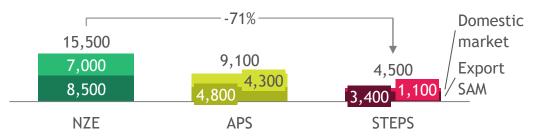
U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)

1. Broad range due to variation across minerals and high potential & experienced volatility in commodity metals pricing. ~6% average margin used for baseline analysis Source: BCG analysis

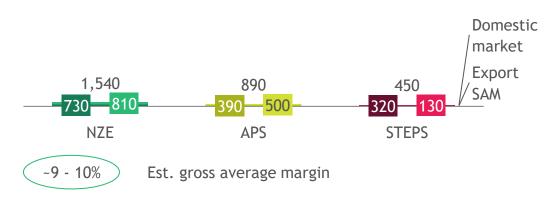

Large SAM across market segments reflective of massive global automotive demand and significant private & public momentum in electrification

Software

U.S. Serviceable Addressable Market (SAM) (2020 - 2050, \$B)

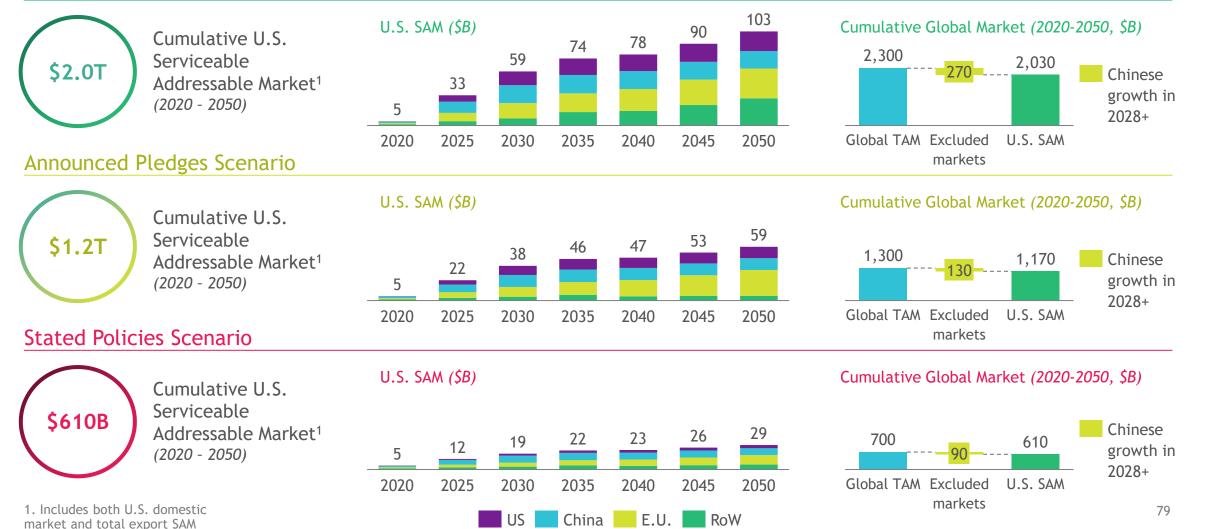


U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)

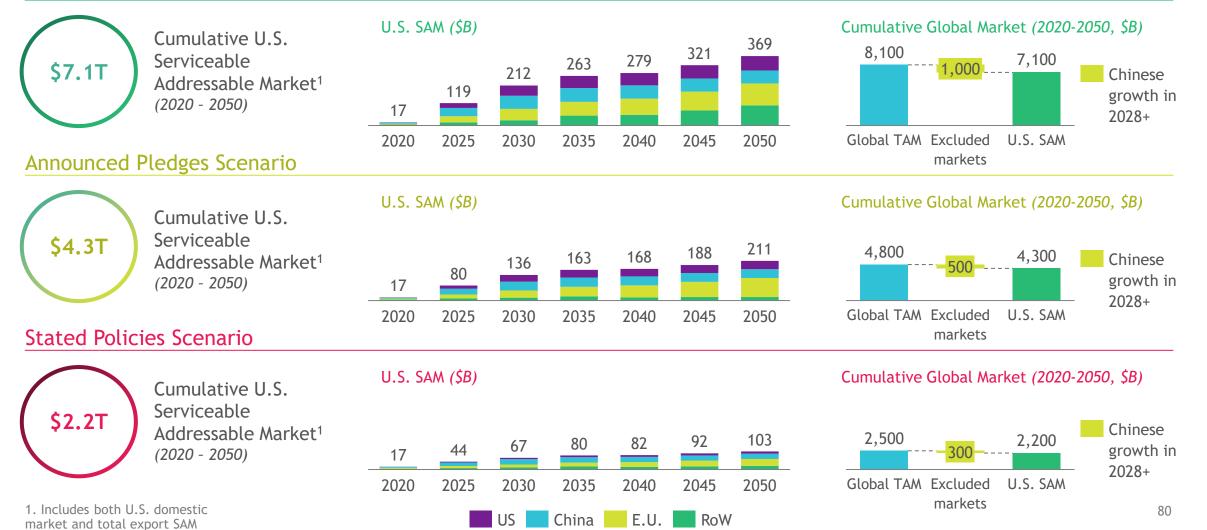


Aftersales services

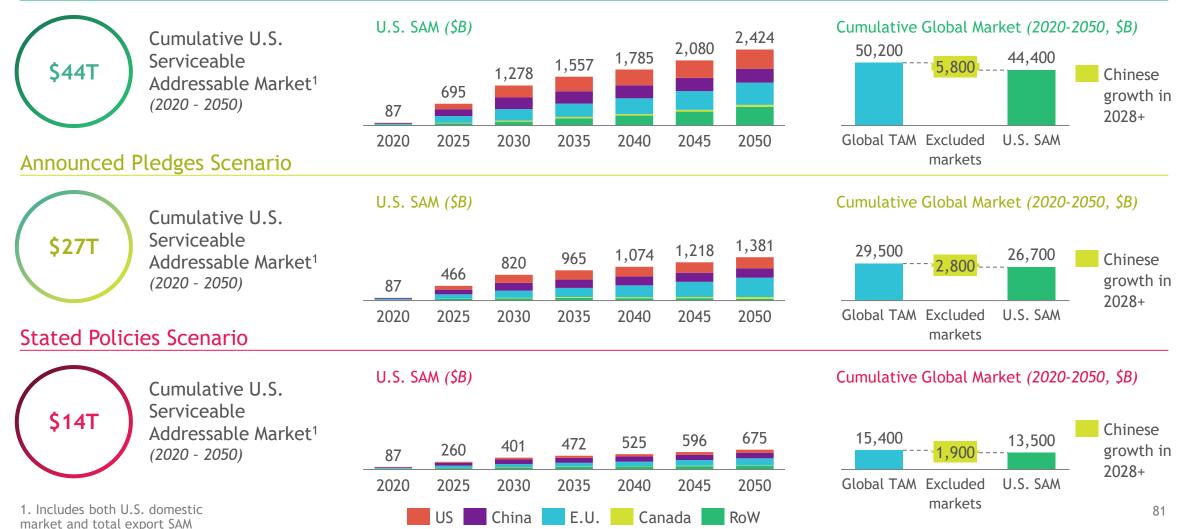
U.S. Serviceable Addressable Market (2020 - 2050, \$B)

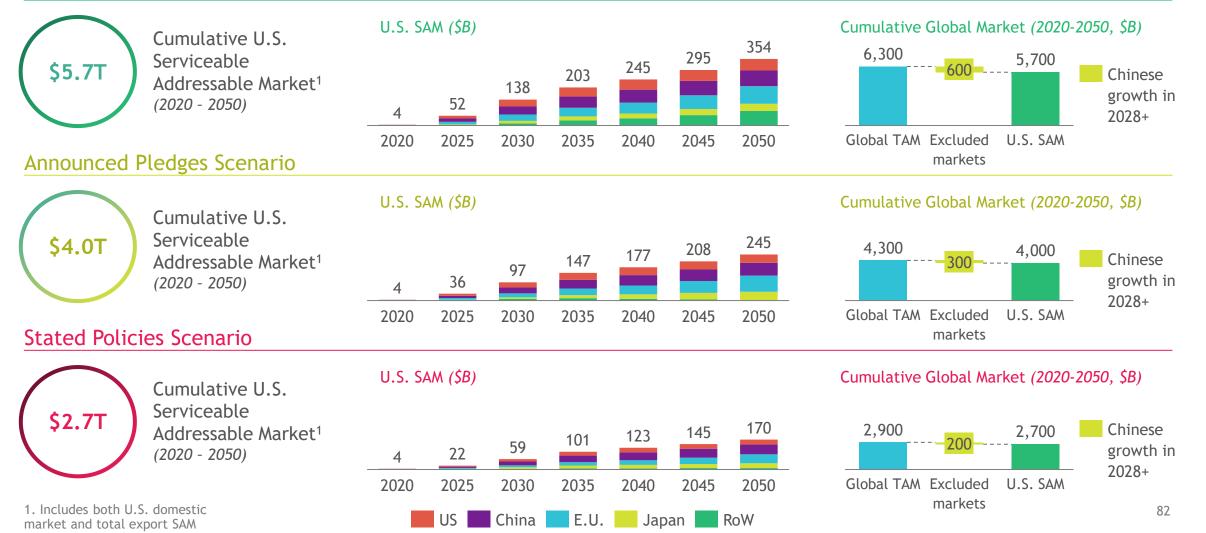


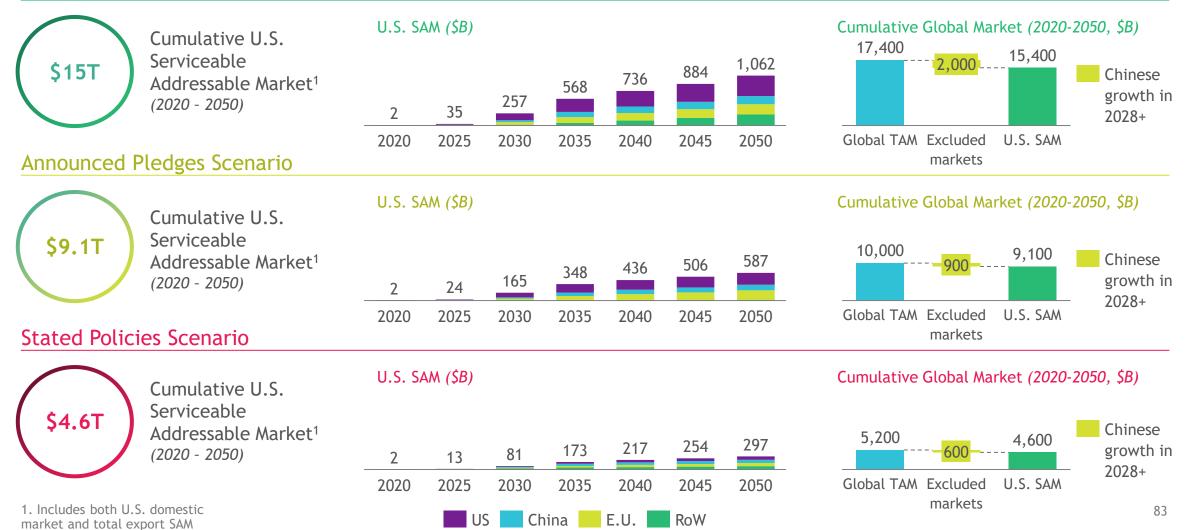
U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)



1. Broad range due to variation across minerals and high potential & experienced volatility in commodity metals pricing. ~6% average margin used for baseline analysis Source: BCG analysis


Raw materials | Large ~3x delta in global battery mineral TAM across scenarios, China expected to limit foreign-controlled imports


Battery & powertrain manufacturing | China ~40% global near-term TAM in STEPS due to ambitious policies, more variability in US, E.U.


OEM | Largest value chain segment across scenarios with lowest cumulative TAM estimate of \$14T in STEPS

Software development | Software market experiences rapid growth after ~2028 as applications reach commercial viability

Aftersales services | Rapid growth after ~2030 as AV, connected vehicle applications become integrated with EV ecosystem

Raw Materials | U.S. behind in raw material innovation and investment, with highly limited domestic extraction or processing activity

Areas for Competitive Advantage	Current ranking	Summary analysis
Raw material availability	High	 U.S. has significant lithium brine reserves in the Southwestern U.S. as well as the necessary extraction technologies. Additionally, the U.S. has small amounts of known cobalt and nickel reserves but limited existing extraction operations across all minerals. Canada also hosts reserves that could be leveraged to build the overall NA supply chain
Intellectual Property & innovation	Low	 Patent volume since 2015 in raw material mining, extraction, and processing extremely small relative to other major EV innovators, behind China (+1070% vs. U.S.), Japan (+170%), and South Korea (+80%). Overall patent volume is just ~9% of Chinese patenting, and only one U.S. company is within the top 15 high patent-volume entities globally
Research & technical leadership	Low	 Similar to the overall patent landscape, Chinese researchers publish raw materials-related science at ~5x the rate of U.S. researchers. Additionally, a minimal gap in overall citations/paper between the two countries suggest Chinese research is higher-quality than in other segments, and the top 20 institutions in the field are almost exclusively located in China
Low operational costs	Low	 Labor is a significant portion of cost in this segment, U.S. labor costs are above-average globally and significantly higher than other mineral supply regions such as South America, East & Southeast Asia, and Africa. However, opportunity to labor share down through operational innovations & automation
Demand / supply side policy	High	 Despite a delay in policy surrounding production & procurement of critical battery minerals within the U.S., the Biden Administration's recent invocation of the Defense Production Act is a significant step in this direction. While not strictly a demand-side policy, it will help provide funding and guarantee a market for companies within the U.S. \$2.9B allocated in IIJA to boost domestic battery production, including mineral processing, but limited demand-side support
Relative domestic market maturity	Low	 U.S. investments are notably small in this space, totaling just ~7% of China's private sector investment in the industry since 2017 and 1/3 of Australia's. Combined with major public support in competing countries, U.S. nascent in raw materials market
Regulatory environment & existing infrastructure	Low	 Non-uniform and often stringent environmental policy are major inhibitors of new mining/extraction site startup, with disparate state restrictions combining with a slow permitting policy to stimy new initiatives Lack of uniform federal guidance or oversight has resulted in local protests often driving indefinite delays at proposed sites, with new mineral mines in the U.S. taking 7-10 years to receive permit approval compared to 2-3 years in countries with similar environmental standards such as Canada and Australia
Overall ranking		U.S. well behind today with minimal mining operations and limited research, IP, or investment in the space

Kan alteration

Battery & Powertrain Manufacturing | U.S. has skilled workforce, upstream IP and limited policy support, but falling behind on investments & downstream IP

Areas for Competitive Advantage	Current ranking	Summary analysis	😭 = Key dimension
Raw material availability	N/A	Not applicable in segment	
Intellectual Property & innovation	Low	 South Korea rapidly expanding patent volume as market leaders including LG Che and South Korea broadly climbs into the top 5 countries on the Global Innovation Domestic patent leaders skew upstream towards battery materials and novel battery climanufacturers that focus more on production innovations The manufacturing complexity of EV batteries & powertrains drives a steep learn 	m, Samsung invest heavily in research Index hemistry research vs. foreign ing curve, and novel chemistries can
Research & technical leadership	High	leadership of U.S. work is comparatively high - Additionally, U.S. often closer to the cutting edge, partially reflected in the Glob	al Innovation Index ranking which puts
Low operational costs	Low	globally, and significantly higher than all major manufacturing regions except the EU	5 5
Demand / supply side policy	High	 \$2.9B allocated in IIJA to boost domestic battery industry, including cell & pack manuf support 	acturing, although limited demand-side
Relative domestic market maturity	Low	 Chinese investments outpace U.S. by 70% in EV batteries over past 4 years as Chinese n 40%+ of the market 	nanufacturers rapidly scale to control
Regulatory environment & existing infrastructure	Low	 Permitting policy can limit the pace at which battery input & component manufactures the impact is relatively limited vs. mining operations 	rs can construct new facilities, although
Overall ranking		U.S. well behind today in at-scale production but continues to hold strong IP presence, part	icularly in battery chemistry
	Raw material availability Intellectual Property & innovation Research & technical leadership Low operational costs Demand / supply side policy Relative domestic market maturity Regulatory environment & existing infrastructure	Raw material availabilityN/AIntellectual Property & innovationLowResearch & technical leadershipHighLow operational costsLowDemand / supply side policyHighRelative domestic market maturityLowRegulatory environment & existing infrastructureLow	Intellectual Property & innovationLowU.S. 4th globally in patent volume in EV batteries behind China (+175% vs. U.S.), Japan South Korea rapidly expanding patent volume as market leaders including LG Che and South Korea broadly climbs into the top 5 countries on the Global InnovationIntellectual Property & innovationLowDomestic patent leaders skew upstream towards battery materials and novel battery of manufacturers that focus more on production innovations - The manufacturing complexity of EV batteries & powertrains drives a steep learn have major impacts on reliability, safety, and cost, making IP the most impactful eadership of U.S. work is comparatively high - Average quality of those papers is notably lower, with an average 29 citations vs. leadership of U.S. work is comparatively high - Additionally, U.S. often closer to the cutting edge, partially reflected in the Glob U.S. ahead of all competing countries (U.S. #3, vs. Korea at #5, China at #12, Jap 2, China's unit an at #12, Jap 2, Japane at #12, JapLow operational costsLow• Although labor is a comparatively small portion of cost in this segment, U.S. labor cost globally, and significantly higher than all major manufacturing regions except the EU

85

OEM | Strong U.S. OEM labor force & market ecosystem, but manufacturers behind in IP innovation as Asian & European manufacturers lead in automation

😭 = Key dimension

	Areas for Competitive Advantage	Current ranking	Summary analysis
	Raw material availability	N/A	Not applicable in segment
☆	Intellectual Property & innovation	Low	 U.S. patent volume in OEM innovations 5th globally, behind China (+200% vs. U.S.), South Korea (+190%), Japan (+40%), and Germany (+25%) as automakers in those regions invest heavily in EV transition Toyota, Hyundai the notable leaders in patent activity as Asian automakers drive towards automation and manufacturing improvements, but Ford in 3rd place with >700 patents since 2015 as only U.S. automaker in top 15 patent entities globally
	Research & technical leadership	High	 U.S. in second place to China in overall literature volume but has significantly higher citations/publication to make it an overall leader in cumulative impact, with DoE and University of Michigan key centers for U.S. OEM-related research Strong traditional automaker supply base & accompanying workforce that will be powerful in EV transition
	Low operational costs	Low	• U.S. labor costs are comparatively high compared to some automaking regions such as East Asia, but innovations in automation and manufacturing operations continue to drive labor share of cost down in U.S., making overall production costs competitive
	Demand / supply side policy	High	 Both Federal and State governments have implemented a varying set of EV purchase incentives, including the Federal EV Tax Credit, which have helped to drive EV adoption Notably however, the investment size is outpaced by similar policies in China, which allocated ~\$6B U.S.D in the 2022 fiscal year budget for NEV purchase subsidies. New proposed incentives by the Biden Administration would close this gap
	Relative domestic market maturity	Low	 Chinese investments outpace U.S. by 50% in EV OEM over past 4 years as diverse Chinese manufacturers rapidly scale to meet domestic market demand, but the two countries are notable leaders, with the U.S. outpacing the next nearest nations of Sweden, Germany, and India in investment by 7-11X
	Regulatory environment & existing infrastructure	High	• Strong legacy infrastructure, policy, and market structure in place to support automakers
	Overall ranking		U.S. has good OEM environment today, but no clear leadership in EVs and must work to maintain positioning

Software & aftersales services | U.S. the market leader with dominant IP and investment, should work to ensure policy supports continued deployments

Areas for Competitive Advantage Current ranking Summary analysis

😭 = Key dimension

Raw material availability	N/A	Not applicable in segment
Intellectual Property & innovation	High	 U.S. possesses clear lead in vehicle software patents, with 80% more publications since 2015 than the next leading countries China, South Korea, and Germany Diverse ecosystem of players within U.S. across connected/autonomous vehicle value chain. Auto OEMs, AV/connected vehicle startups, and critical hardware inputs such as lidar & computing components all drive significant patent activity
Research & technical leadership	High	 Despite slightly lower publication volume than China putting the U.S. in 2nd in overall literature production, U.S. researchers garner the most total citations globally due to their comparatively higher-impact papers, suggesting the U.S. research ecosystem is a leader in the AI, ML, sensor, and machine vision technologies underlying autonomous driving
Low operational costs	Low	 U.S. software & engineering talent highest-ranked globally in per-head costs, but low overall cost structure and high scalability of software development blunts impact on margin pools
Demand / supply side policy	Low	 Extremely limited public financial support for AV product development or commercialization, including for upstream AI/ML technology relative to competing nations such as China beyond small-scale grants
Relative domestic market maturity	High	 U.S. AV/connected vehicle investment significantly outpaces the rest of the world, with domestic private investment totaling more than the next 10 countries combined as the clear technical leaders begin to deploy commercial applications of key products However, VC investment within Asia Pacific region growing at higher rate than North America as shown in the Global Innovation Index, reflecting accelerating investment in emerging technologies within the block
Regulatory environment & existing infrastructure	High	 Limited AV policy guidance at the federal level and momentum amongst relevant agencies to accelerate policies in the space (e.g., NHTSA) Some state and local-level domains that enable testing & deployment While some countries including China have provided guidelines for AV deployment, no clear leader in this segment
Overall ranking		U.S. has strong leadership in advanced automotive software ecosystem. With both innovation and investment leadership, the domestic market possesses the strongest base of current commercial players

Overview of key assumptions

Assumptions	Value	Impact on modeling	Source
Projected annual new vehicle sales, by region, globally	Varies by year	Significant changes in vehicle ownership models or greater than expected macroeconomic growth/downturns could significantly impact global vehicle sales and concurrently change market size across all segments proportionally.	IHS Markit automotive industry analysis, 2020-2040
Vehicle/component cost breakdown, and expected penetration at component level	Varies by year	Breakdown of value across vehicle components is generally based on historical values and could shift as certain components drive further down the cost curve, reducing respective segment market sizes. Significant new costs, such as advanced sensors, may also additionally impact value breakdown.	BCG Unit Economic Model, 2021 Bank of America "Who Makes the Car" report, 2021
CAGR in 2039-2040 across value pool segments will continue through 2050	N/A	Any significant plateau or increase in penetration rates could shift the late year market projections, respectively.	- N/A
% BEV powertrain cost attributed to battery	~70%	This % is the direct basis for the raw material segment market size, and significant fluctuations in raw materials prices or changes in dominant battery chemistry could cause this value to shift.	Industry expert interviews König et. al., World Electric Vehicle Journal, 2021
% BEV battery cost attributed to raw materials & minerals	~40%	This % is the direct basis for the raw material segment market size, and significant fluctuations in raw materials prices, battery production processes/economics, or changes in dominant battery chemistry could cause this value to shift.	Industry expert interviews Wentker et. al., Energies, 2019 Bloomberg NEF

Low-carbon Hydrogen

Low-carbon Hydrogen | Definition of each segment across value chain

Raw materials	OEM	Project Development	Financing	EPC	Energy Inputs	Operations/ Maintenance	Transport & Storage	Offtake	Support Services				
Green													
Electrolyser critical materials (e.g., Pt, Ir, Ni, Gd, Zr, Co) Electrolyser stack components (e.g., bipolar plates, membrane, sealings, frames, porous transport layer) Blue	Electrolyser, compressor, water purification and rectifier	Financing for project and long- term offtaker contracts Significant renewable energy procurement Current ecosystem largely made up by energy developers	Financing for low-carbon hydrogen involves securing a capital stack for large-scale projects and providing research funding into nascent electrolyser, reformation and transport technologies.	Engineering, procurement & construction (outsourced or inhouse) • Electrolyser stack and systems construction • Supply chain management • Contractor mgmt. • System testing	Renewable energy	Electrolyser maintenance (e.g., replacing membranes, fighting corrosion) Management of ongoing operations Electrolyser monitoring and upkeep	Conversion (e.g., liquefaction, ammonia/metha nol synthesis, hydrogenation) Compression for transport (largely done via positive displacement or centrifugal compressors) Salt cavern, pressurized/cryo	hydrogen in cree energy and sup chemical dep production upt Feedstock for industrial production (e.g., refining, ammonia, cement/steel) Transport, especially for	 Auxiliary markets created to support hydrogen deployment and uptake Hydrogen energy consultant Green Hydrogen certification (e.g., CertifHy) 				
Metals for reformer tubes (e.g., Cr, Ni, Fe)	Reformer (ATR/SMR) and CCUS technologies	R) and ecosystem mostly consists			-	5	ecosystem mostly consists of large O&G	 Reformer (ATS/SMR) CCUS technology 	Natural gas resources	CCUS monitoring and upkeep	Gaseous tube trailers, liquid tanker, pipeline	long-distance vehicles Fuel Cells as feedstock for multitude applications	
Amine-based solvents for chemical	Catalytic pyrolysis for turquoise H ₂	-			Natural gas and biomass resources for		and chemical hydrogen transport	(EVs, houses, and portable power)					
absorption CCS Solid surfaces for adsorption (e.g., activated carbon, alumina, metallic oxides), liquid solvents for absorption	involves molten metal or gas reactors				pyrolysis		Final delivery of hydrogen to offtaker	Markets for solid-carbon byproduct from pyrolysis (e.g., soil improver, input for tire manufacturing)					
(e.g., Selexol, Rectisol)									90				

Significant opportunity exists across the low-carbon H₂ value chain within OEM, Project development, EPC, and transport & storage

							, , , , , , , , , , , , , , , , , , ,	Additional analys	is in Phase 2
							H	igh Medium	Low N/A
Raw materials & inputs	ОЕМ	Project Development	Financing	EPC	Energy Inputs	Operations/ Maintenance	Transport & Storage	Offtake	Support Services
APS U.S. Service	eable Addressable	e Market (cumulat	tive 2020 - 2050,	\$B)					•
\$310 - 480B	\$460 - 560B	\$105 - 130B	\$35 - 45B	\$105 - 130B	N/A	\$210 - 260B	\$240 - 300B	\$2,750 - 3,350B	N/A
Competitive Adv	vantage								
Global availability of electrolyser critical materials (e.g., Pt, Co, Ir, Gd, La, Ce, Zr) are concentrated in 2 countries	Electrolysers and other equipment are ~45% of total system cost; Reliable/ high quality OEM can unlock financing	Global and inter-regional markets are emerging, dominated by large energy operators; Successful project execution requires expertise	Direct government funding is a critical enabler to unlocking cost- competitiveness and research efforts	Potential for labor force specialization in chemical/indust rial asset creation for low-carbon hydrogen projects	RE production makes up ~47% of total system costs with significant cost benefits stemming from localized production	Little skill labor needed, but there are opportunities given limited experience in large-scale electrolysers and prospects for cost- competitiveness	Novel transport technologies (e.g., LOHC) has the potential to unlock 37% transport cost reductions	Efforts to incentivize hydrogen uptake require direct financial support Potential to leverage existing infrastructure	Potential for labor force specialization and IP development given nascen market and unmet offtak needs
Societal / socio-	economic impact	: (peak job-years	created 2020 - 20	050)					
100K - 130K domestic job- years	130K - 190K domestic job- years	170K - 200K domestic job- years	20K - 25K domestic job- years	190K - 230K domestic job- years	N/A	190K - 230K domestic job- years	200K - 250K domestic job- years	N/A	N/A
Source: BCG Ana	alysis								- 9

Offtake

Low

Support Services

N/A

Low-carbon Hydrogen | Raw Materials & Inputs

Description of technology value segment

Raw materials & inputs for green hydrogen include mining and processing critical electrolyser materials such as Platinum, Iridium, and Nickel. Reformer raw materials include metals for pipes (e.g., Cr, Ni, Fe). CCS materials include amine-based solvents for chemical absorption, solid surfaces for physical adsorption, and liquid solvents for physical absorption.

	Market dynamic	CS			
\$310 - 480B		2020	2030	2040	2050
Cumulative APS U.S. SAM (\$B, '20-50)	APS U.S. SAM (\$B)	<1	4 - 5	15 - 20	10 - 15
	Margin (%)	5 - 10%	5 - 10%	5 - 10%	5 - 10%

Value proposition

Project

Developmen

Financing

OEM

While Raw Materials & Inputs may at first appear attractive due to its large market size, the very high global concentration of critical electrolyser materials lessens the opportunity to play in this space and develop a competitive advantage for players without direct access to these resources. In addition, the ability to purchase these raw materials at global commodity prices further decreases the attractiveness of this segment for subsequent deep-dive.

EPC

Energy Inputs

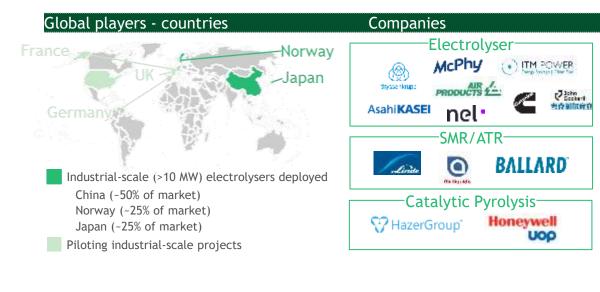
High

Operations/

Maintenance

Transport &

Medium


Market	Competitive Advantage	Societal Impact
Competitive advantage:	S	
nput material availability & concentration	Availability of critical electrolyser is concentrated with China holdin Zr, La, Ce, and Y2 ²	r materials (e.g., Pt, Co, Ni, Ir) g >95% of global supply of Gd,

Low-carbon Hydrogen | OEM

Description of technology value segment

OEM for green hydrogen includes R&D into and manufacturing of electrolysers, compressors, water purification and supporting systems. OEM for blue hydrogen involves reformer (SMR or ATR) and CCUS technologies R&D and manufacturing. Pyrolysis⁵ for turquoise H₂ involves molten metal or gas reactors.

	Market dynamics						
\$460 - 560B		2020	2030	2040	2050		
Cumulative APS U.S. SAM (\$B, '20-50)	APS U.S. SAM (\$B)	<1	5 - 10	20 - 30	15 - 20		
	Margin (%)	10 - 20%	10 - 20%	10 - 20%	10 - 20%		

Raw materials OEM Project Development Financing EPC Energy Inputs Operations/ Maintenance Transport & Storage Offtake Support Services

High

Medium Low

N/A

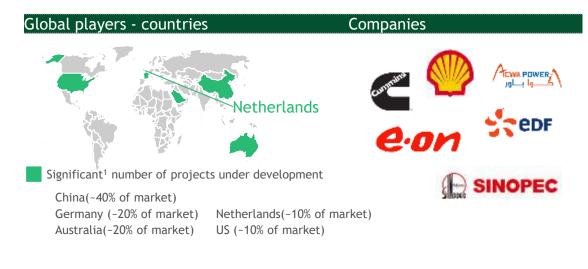
Value proposition

OEM presents an opportunity to build competitive advantage in a segment with large potential cumulative market value. Electrolyser manufacturers are relatively small and highly concentrated, creating space for new entrants. To grow to industrial-scale projects requires direct government funding. There is a range of export potential including the IP, hydrogen, ammonia or methanol, and electrolyser and reformers. However, there is risk of commoditization and competition on costs, especially from Chinese electrolysers

Evaluation							
Market	Competitive Advantage	Societal Impact					
Competitive advantage	S						
Existing regulatory env.	hydrogen cost-competitive, direct fin	In order to scale to industrial-sized electrolysers and make green hydrogen cost-competitive, direct financial support in the form of subsidies and carbon taxes is necessary to lower green premium and fund further research efforts					
Providers/supplier concentration	OEM market today is concentrated, with top 5 players controlling 40-60% of the market. Potential disruption arising from Chinese OEMs producing electrolysers at ~1/3rd current market rate ⁴						
	ATR has high potential (84% vs. 74% et capture rates for ATR and SMR respec	<i>, , , , , , , , , ,</i>					
IP & relevant technical expertise availability	No electrolysers are made without rare metals. High potential and defendable IP if technology can improve to be made with different or no rare metals (e.g., Pl and Ir, used in PEM, are two of the scarcest, most energy-intensive and emission-intensive metals ³)						
	Industrial-scale electrolyser technolog potential and defendable IP (e.g., Pla system costs for electrolyser plants ²)	nt balancing makes up 55% of					
	Catalytic and plasma pyrolysis for turquoise H_2 only at a TRL of 7. Medium potential to improve catalyst mechanical stability and improve output purity.						
Trained/skilled labor force availability	Highly specialized skills required for R build advantage, as labor force has lir manufacturing industrial-scale plants/ immaturity.	nited experience in	н				
			0.3				

1. Uk.gov - Hydrogen production costs 2021; 2. iea The Future of Hydrogen; 3. IEA; 4. rechargenews; 5. Systems for Catalytic Pyrolysis Source: Asahi-Kasei; Shell; IEA Hydrogen Projects Database (2021); Global Data; Expert Interviews; BCG Analysis

Copyright © 2018 by Boston Consulting Group. All rights reserved.


Low-carbon Hydrogen | Project Development

High Medium Low N/A

Description of technology value segment

Project development for green hydrogen largely involves securing financing, long-term offtaker contracts, and procuring significant renewable energy inputs. .

	Market dynamics						
\$105 - 130B		2020	2030	2040	2050		
Cumulative APS U.S. SAM (\$B, '20-50)	APS U.S. SAM (\$B)	<1	1 - 2	5 - 7	3 - 4		
	Margin (%)	15 - 20%	15 - 20%	15 - 20%	15 - 20%		

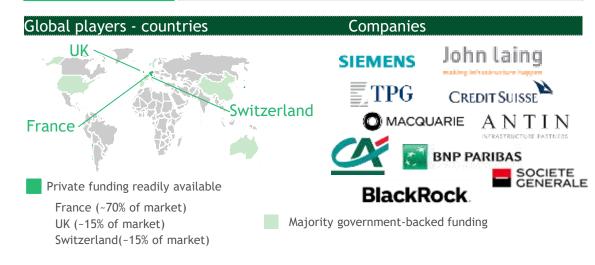
1. Significant = more than 4 new projects under development, Saudi Arabia included due to 4,000 MW project

Source: IEA Future of Hydrogen: IEA Hydrogen Project Database (2021); Hydrogen Council Insights 2021; Global Data; Project Team; BCG Analysis

Value proposition

Opportunity in Project Development is driven by the high-level skillset required to pull together and successfully execute nascent, large-scale, low-carbon hydrogen projects. Furthermore, a global export potential is evolving as domestic energy providers are internally building the skills for developing low-carbon hydrogen projects and capitalizing on the early-mover advantage presenting itself in this segment.

Evaluation					
Market	arket Competitive Advantage Societal Impact				
Competitive advantage	S				
Existing regulatory env.	Relevant companies in this space operate with indirect to no financial support.				
Providers/supplier concentration	Market is fragmented, with the top 5 players controlling <40% of the market				
Market ecosystem maturity	Global and inter-regional markets are emerging, dominated by large energy operators operating on an international scale				
Financing access	Financing is easily accessed through existing markets: energy developers are using internal revenues to finance hydrogen efforts				
Trained/skilled labor force availability	Highly specialized skills needed to parties and successfully execute p agreement, contract suitable RE p	roject (e.g., secure offtaker	н		


High Medium Low N/A

Low-carbon Hydrogen | Financing

Description of technology value segment

Financing for low-carbon hydrogen involves securing capital for large-scale projects and providing research funding into nascent electrolyser, reformation and transport technologies

	Market dynamics						
\$35 - 45B		2020	2030	2040	2050		
Cumulative APS U.S. SAM	APS U.S. SAM (\$B)	<1	<1	1 - 2	1 - 2		
(\$B, '20-50)	Margin (%)	<5%	<5%	<5%	<5%		

Value proposition

Financing plays an important role in certain areas of low-carbon hydrogen (e.g., OEM, Transport & Storage). Many efforts are being funded internally by large energy providers who are developing projects in house (e.g., Shell). It is important to note however, that government financial incentives (e.g., carbon tax, subsidies, PTC) will be critical to reach cost-competitiveness and encourage global uptake of low-carbon hydrogen

Evaluation			
Market	Competitive Advantage	Societal Impact	
Competitive advant	tages		
Financing access	Financing for parts of the hydrogen value chain is highly dependent on segment (e.g., govt' funding is needed for R&D, for EPC and O&M, there is private capital from existing energy developers)		Μ

N/A

Offtake

Low

Low-carbon Hydrogen | EPC

Description of technology value segment

Engineering, procurement & construction (outsourced or inhouse) of Electrolyser stack and systems, Reformer (ATS/SMR), CCUS technology, supply chain mgmt., contractor mgmt., system testing.

\$105 - 130B Cumulative APS U.S. SAM (\$B, '20-50)	Market dynamics					
		2020	2030	2040	2050	
	APS U.S. SAM (\$B)	<1	1 - 2	5 - 7	3 - 4	
	Margin (%)		5 - 10%		5 - 10%	

Value proposition

Raw materials

& inputs

Project Development

Financing

OEM

Given the low concentration of pure-EPC players and requirement for a certain level of skilled labor, the EPC segment is not to be immediately dismissed. However, this market is estimated to remain quite small, and large energy providers with relevant experience are moving in, making this a segment that may not be worth doing a subsequent deep-dive.

Operations/

Maintenance

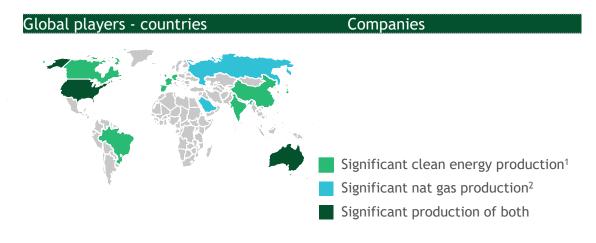
Energy Inputs

High

Transport &

Storage

Medium


Market	Competitive Advantage	Societal Impact	
Competitive advar	tages		
Market ecosystem mat	Companies offering stand-alone	5, 5	
Providers/supplier concentration	are beginning to create EPC divi	Few companies specialize in EPC-only. Larger energy companies are beginning to create EPC divisions in order to address market need (e.g., McDermott, Argan, Inc)	
Trained/skilled labor f availability	orce Chemical/industrial asset creati	Chemical/industrial asset creation requires highly skilled labor	

Low-carbon Hydrogen | Energy Inputs

Description of technology value segment

Energy inputs for green hydrogen include renewable energy (e.g., PV, wind) and natural gas for blue hydrogen

	Market dyna	mics				
Not applicable		2020	2030	2040	2050	
Cumulative APS U.S. SAM	APS U.S. SAM (\$B)	Not applicable				
(\$T, '20-50)	Margin (%)		Not ap	oplicable		

Raw materials & inputs	OEM	Project Development	Financing	EPC	Energy Inputs	Operations/ Maintenance	Transport & Storage	Offtake	\rangle	Support Services	

High Medium Low N/A

Value proposition

Necessary access to low-cost, regional and high-capacity factor RE for green H_2 production, makes Energy Inputs a critical enabler of this value-chain. Given the geographically constrained nature of low-carbon H_2 energy inputs, securing access will support growth throughout the rest of the value-chain. Specific countries, such as the U.S. and Australia, have significant access to both renewables and natural gas production.

Market	Competitive Advantage	Societal Impact		
Competitive advantages				
Input material availability &	Green: RE production makes up - significant cost benefits stemming Renewable resources availability specific countries have developed (U.S., China, Australia)	g from localized production. is location-dependent and	Н	
concentration	Blue: Natural gas is the largest component of Levelized cost of hydrogen for the blue hydrogen value-chain ³ with significant cost benefits stemming from localized production, which is highly concentrated in a few key players (e.g., U.S., Russia, Australia, etc.)			
Cost Advantage Potential	Blue: Natural gas has an interesti LNG is traded globally, however of capacity has created regional pip which can be different than globa	onstrained LNG export e gas markets with prices	M	
	Green: Domestic access to low-co important advantage. Ability to s through on-site generation plant.	· · · ·	Ν	

1. Defined as having produced >50,000 GWh of zero-carbon electricity (solar PV, wind, hydro, geothermal, and nuclear) in 2021; IEA data 2. Defined as greater than 3,000 BCF of natural gas production in 2020; 3. Green H₂ power costs is derived from a US renewables LCOE based on 50/50 split of onshore wind/utility-scale PV. Ranges for green H₂ reflect variance of electricity across three U.S. regions, CA, TX, and the Midwest. LCOE ranges from \$44-52/MWh in 2021 and \$28-29/MWh in 2050; 2. iea The Future of Hydrogen Source: EIA, BCG NAMR Low Carbon H₂ Cost Model; BCG Analysis

Support Services Transport & Offtake

Low-carbon Hydrogen | Operations & Maintenance

Companies

Description of technology value segment

Operations & maintenance for low-carbon hydrogen involves hydrogen generation, management of electrolyser and natural gas facilities and asset monitoring and upkeep

	Market dynamics					
\$210 - 260B Cumulative APS U.S. SAM (\$B, '20-50)		2020	2030	2040	2050	
	APS U.S. SAM (\$B)	<1	2 - 3	10 - 15	15 - 20	
	Margin (%)	5 - 10%	5 - 10%	5 - 10%	5 - 10%	

Headquarters of company providing O&M services France (~40% of market) US (~30% of market) Germany (~30% of market)

Value proposition

Raw materials

& inputs

Project

Development

Financing

OEM

Despite recent growth in O&M and increased demand, O&M will likely see declining margins due to an increase in market concentration. In addition, there is low potential for durable commoditized nature of services and low experience level required. O&G are key players in this space who have an established scale-advantage and can leverage existing O&M experience for blue hydrogen operations and maintenance

EPC

Energy Inputs

Evaluation			
Market	Competitive Advantage	Societal Impact	
		-	
Competitive advantages	5		
Trained/skilled labor force availability	Little skilled labor needed, but there is a potential to be first- mover given very limited industry experience with industrial- scale electrolysers		
Market ecosystem maturity	Existing markets are largely regional, immature and limited in nature		
Cost advantage potential	Inputs (experience) are global commodities, but there is opportunity for competitive advantage in cost-competitiveness		

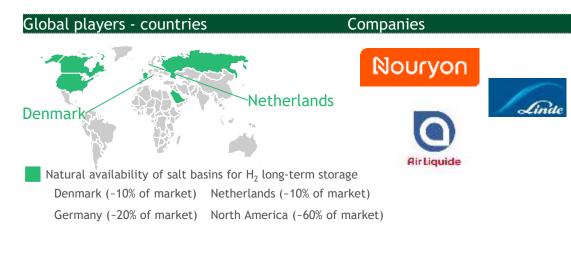
Medium N/A High Low

Copyright © 2018 by Boston Consulting Group. All rights reserved.

Offtake

Low

Support Services


N/A

Low-carbon Hydrogen | Transport & Storage

Description of technology value segment

Transport & storage for low-carbon H_2 includes conversion (e.g., liquefaction, ammonia/methanol synthesis, hydrogenation), compression, storage (e.g., salt cavern, pressurized/cryogenic tank, and materials), and transport (e.g., gaseous tube trailers, liquid tanker, pipeline and LOHC6)

\$240 - 300B Cumulative APS U.S. SAM (\$B, '20-50)	Market dynamics					
		2020	2030	2040	2050	
	APS U.S. SAM (\$B)	<1	2 - 4	10 - 15	15 - 25	
	Margin (%)	5 - 10%	5 - 10%	5 - 10%	5 - 10%	

Value proposition

Raw materials

& inputs

Project

Development

Financing

OFM

Improved infrastructure technology for transport and storage is a critical unlock to scaling low-carbon hydrogen. Opportunities for durable competitive advantage exist in potential to create defendable IP in materials storage, which holds significant cost-reduction potential, access to modern pipeline infrastructure, important/export facilities and locality of infrastructure relative to inputs required for producing low-carbon hydrogen (e.g., RE, CO₂ storage sites).

EPC

Energy Inputs

High

Operations/

Maintenance

Medium

Evaluation				
Market	Competitive Advantage	Societal Impact		
Competitive advantages				
Existing regulatory env.	New transport & storage projects currently leverage various levels of indirect and direct financial support (e.g., HFTO ⁵ subsidizes research into transport & storage technology) to scale up and invest in research innovations			
IP & relevant technical expertise availability	Opportunity to create defensible IP to transport and store hydrogen (Liquid organic hydrogen carriers have the potential to unlock 37% transport cost reductions ³ , ammonia cracking has significant potential for cost-effective distribution of hydrogen in long-distance transport ⁷)			
availability	General skilled labor needed, some level of experience for pressurized and pipeline transportation required with parallels to natural gas pipelines			
-	>90% of global hydrogen pipelines located in Europe and the US ⁸ , allows for potential to leverage molecule transportation rather than more-expensive electron transport as an energy source			
	Retrofitting natural gas pipelines is 21 new hydrogen pipeline ¹ , leveraging US gas pipelines can be a significant adva	5's ~3 million miles of natural	Н	
Financing access	Hydrogen transport and storage research is currently heavily financed through both direct and indirect financial support (e.g., Hydrogen and Fuel Cell Technologies Office conducts research in electrolysers, liquefaction, H_2 carriers, high-pressure tanks, liquid/materials storage ⁴)			

1. European Hydrogen Backbone Study; 3. International Journal of Hydrogen Energy Volume 45, Issue 56: Techno-economic feasibility of road transport of hydrogen using liquid organic hydrogen carriers; 4. Energy.gov; 5. Hydrogen and Fuel Cell Technologies office; 7. Ammonia to Green Hydrogen Project_Science & Technology Facilities Council; 8. IEA The Future of Hydrogen Source: Expert interviews; Sciencedirect - salt caverns; BCG Analysis

99

Support Services


N/A

Low-carbon Hydrogen | Offtake

Description of technology value segment

Use-cases for low-carbon hydrogen are extensive, main applications involve feedstock for industrial production (e.g., refining, ammonia, cement/steel), energy generation (e.g., gas blending, hydrogen combustion turbines), long-haul trucking, chemical production (e.g., ammonia, methanol), fuel-cells for EVs.

\$2.8 - 3.5T Cumulative APS U.S. SAM (\$B, '20-50)	Market dynamics						
		2020	2030	2040	2050		
	APS U.S. SAM (\$B)	<1		130 - 160	200 - 245		
	Margin (%)	Not applicable					

Value proposition

Raw materials

& inputs

Project

Development

Financing

OFM

Relevant enablers to establishing strong and consistent low-carbon hydrogen demand are captured throughout the rest of the value-chain (e.g., cost reductions, infrastructure, financing). It is important to note that low-carbon hydrogen end-use will heavily depend on regulatory support from governments to reach be cost-competitive (e.g., carbon taxes).

EPC

Energy Inputs

High

Operations/

Maintenance

Transport &

Low

Storage

Medium

Evaluation Market	Competitive Advantage	Societal Impact	
market	Competitive Advantage	societat impact	
Competitive advantag	ges		
Existing regulatory env.	Efforts to incentivize hydrogen up financial support (e.g., U.S. Hydro hydrogen 80% to \$1/kg by 20302, targets \$2/kg by 2027; Hydrogen \$1/kg for hydrogen industrial and	ogen Shot to reduce cost of Green Hydrogen Catapult Program Plan has a target of	Н
Relevant infrastructure potential	Existing infrastructure needs upgrades in order to provide access to energy supply. There is opportunity to leverage economies of scale in transportation and unlock +90% cost-savings ¹		Μ
Cost advantage potential	Hydrogen is a global commodity, but as companies seek to decarbonize, low-carbon hydrogen can become a valued energy input. Unlocking cost advantage can incentivize offtake further		

Offtake

Low

N/A

Low-carbon Hydrogen | Support Services

Description of technology value segment

Support services for low-carbon hydrogen includes any auxiliary markets created to support hydrogen deployment and uptake (e.g., hydrogen energy consultant, low-carbon hydrogen certification (e.g., CertifHy)

	Market dynamics					
N/A Cumulative APS U.S. SAM		2020	2030	2040	2050	
	APS U.S. SAM (\$B)	Not applicable				
(\$B, '20-50)	Margin (%)	Not applicable				
Global players - countries			ompanies			
- and -						

stralian Government partment of Industry, Science, Energy and Resources

Private, small-scale certification markets

Value proposition

Raw materials

& inputs

Project

Development

Financing

OEM

Support services is a very broad market encompassing a variety of auxiliary products. Given the nascent nature of the low-carbon hydrogen market, offtakers have many unmet needs and there is a medium potential to create durable competitive advantage. Furthermore, the very low concentration of players facilitates entrance into this segment of the value chain.

EPC

Energy Inputs

High

Operations/

Maintenance

Transport &

Storage

Medium

Evaluation				
Market	Competitive Advantage	Societal Impact		
Competitive advantages				
IP & relevant technical expertise availability	echnology possibility is unclear, but possibility for medium otential given nascent state of market and significant unmet eeds (e.g., integrating hydrogen into operations)			
Trained/skilled labor force availability	otential for highly specialized skill (e.g., consulting services) eeded as product offering can involve training of workforce for ndustrial-scale use due to nascent project nature and limited xperience			
Market ecosystem maturity	Markets are largely regional in nature, and still in developmental stages (e.g., Australia's National Hydrogen Strategy, EU's CertifHy)			

National certification market

Australia (~20% of market)

EU (~80% of market)

E.U., Japan, and South Korea offer greatest export opportunity

European Union

Segments included in SAM:

- OEM
- Project Development
- Transport & Storage
- Offtake

Relevant drivers for inclusion:

- The E.U. is spearheading efforts to define standards and regulations around green hydrogen
- As a customs union, trade potential is the same across the E.U.
- Significant electrolyser capacity additions through 2050 are expected to drive significant need for transportation & storage, OEM, and project development services

Segments included in SAM:

- OEM
- Project Development
- Transport & Storage
- Offtake

Relevant drivers for inclusion:

- One of the first countries to release a national hydrogen plan (2017) and has publicly committed ~\$6.6B to develop domestic H₂ supply chains
- Limited domestic production capacity presents an opportunity for U.S. to enter the market and supply hydrogen molecules, hydrogen derivatives, and infrastructure to support this market
- Market with significant future lowcarbon H₂ demand will likely express a need for novel hydrogen carriers to reduce long-distance transport costs

Segments included in SAM:

- OEM
- Project Development
- Transport & Storage
- Offtake

Relevant drivers for inclusion:

- With limited domestic capacity and aggressive hydrogen targets, South Korea has committed to importing significant (>20Mt) of hydrogen by 2050
- Market with significant future lowcarbon H₂ demand will likely express a need for novel hydrogen carriers to reduce long-distance transport costs

China and Middle East excluded from US SAM due to economic and trade barriers

Segments Excluded from TAM:

- OEM
- Project Development
- Transport & Storage
- Offtake

Relevant policy / economic barriers:

- Persistent tensions between China and US restricting foreign energy imports
 - Lingering effect of US-China trade war at the end of the Trump administration is China's diversification of import partners and increasing domestic energy, to limit its reliance on the U.S.
- Western companies report frequent violations of IP rights in JV agreements, limit value-creation potential

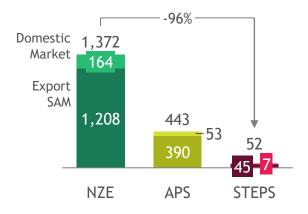
China

 Chinese electrolyser manufacturers are currently dominating electrolyser market on cost-competitiveness

Segments Excluded from TAM:

• Offtake

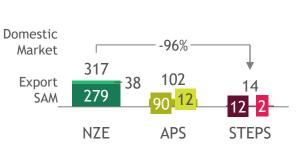
Relevant policy / economic barriers:

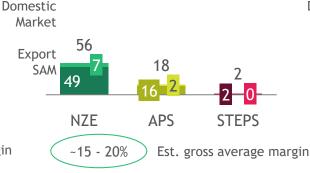

- Limited policies in place to incentivize domestic offtake of lowcarbon hydrogen
- Likely to have the capacity and RE resources necessary to meet any future regional low-carbon $\rm H_2$ demand

 Middle East: Bahrain, Islamic Republic of Iran, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syrian Arab Republic, United Arab Emirates, Yemen
 Source: IEA

$\rm H_2$ growth varies significantly across scenarios, possible ~10x growth in APS and ~30x growth in NZE

OEM

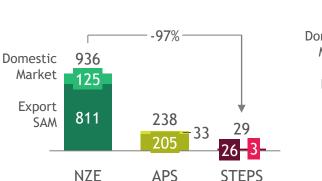

U.S. Serviceable Addressable Market (2020 - 2050, \$B)



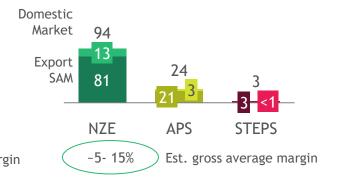
Project Development

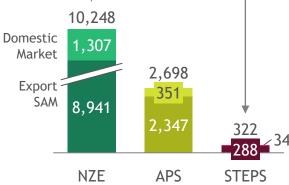
U.S. Serviceable Addressable Market (2020 - 2050, \$B)

U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)


Transportation & Storage

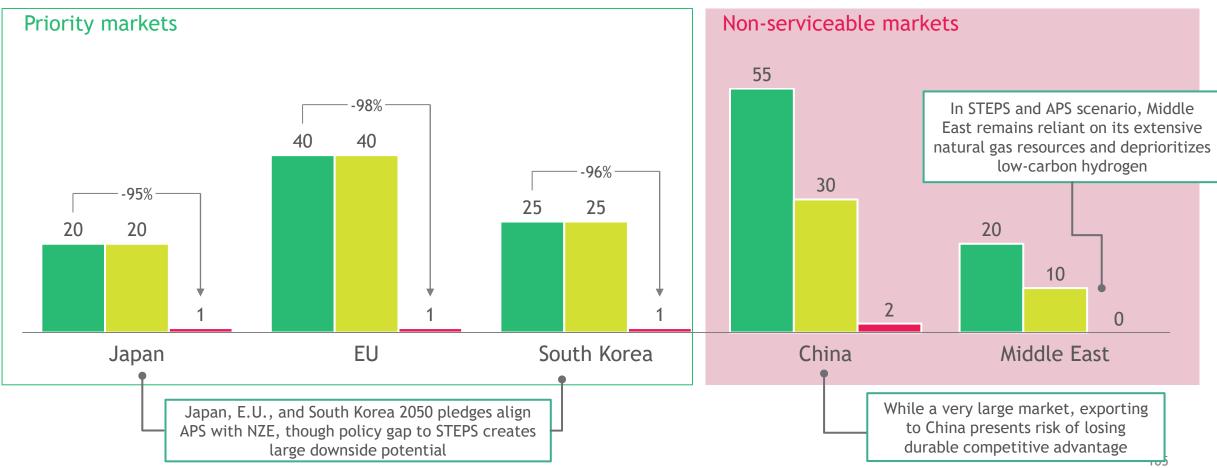
U.S. Serviceable Addressable Market (2020 - 2050, \$B)


Offtake

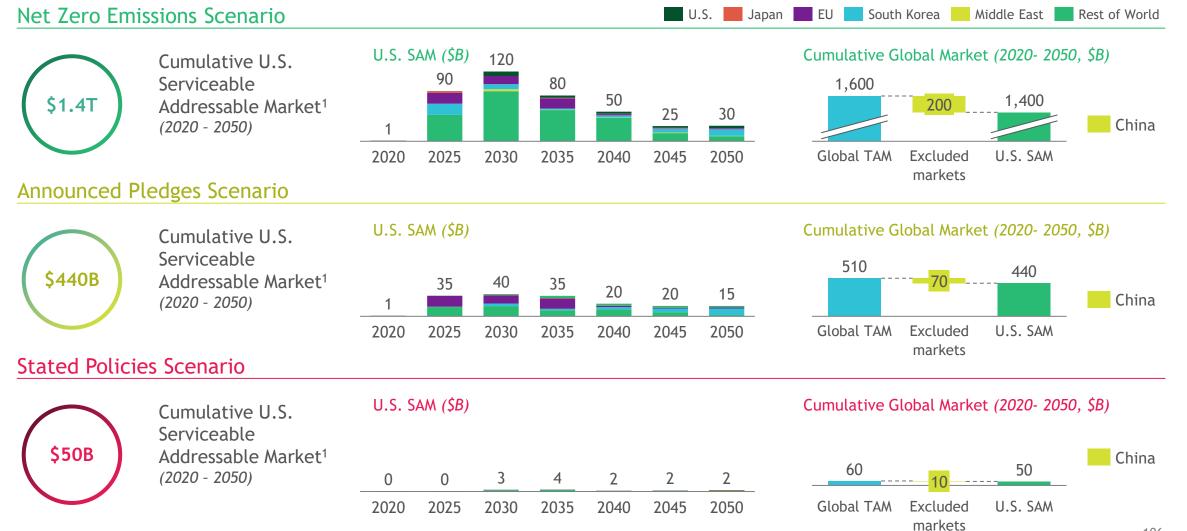

U.S. Serviceable Addressable Market (2020 - 2050, \$B)

-97%

U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)


U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)

Not applicable

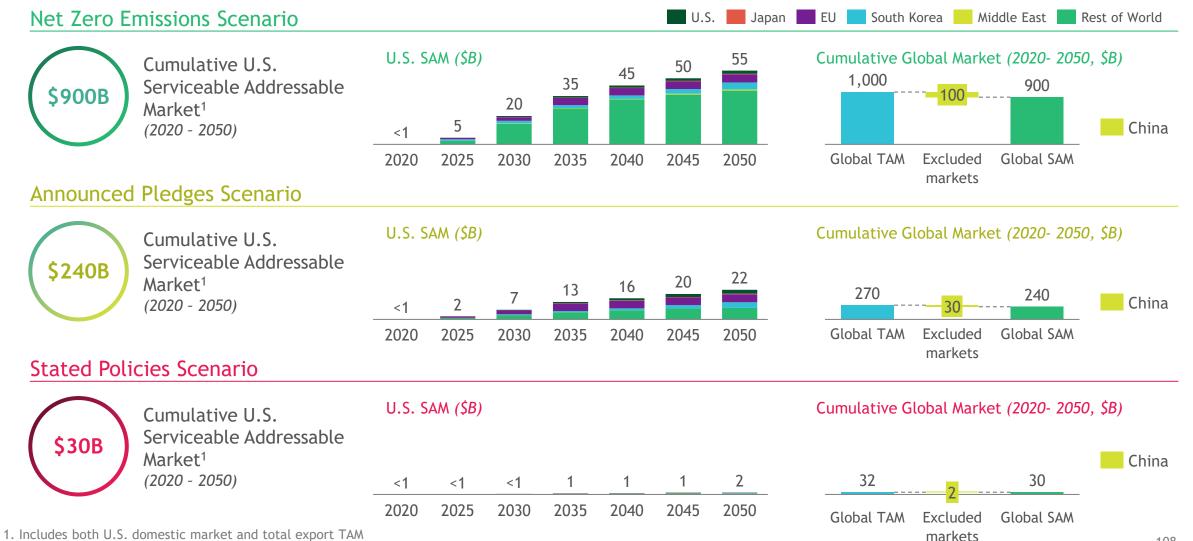

All regions show high scenario-dependency, but priority markets are consistent across APS and NZE scenarios due to net-zero pledges

Low-carbon H₂ production through 2050 by market and scenario (Mt H₂)

NZE APS STEPS

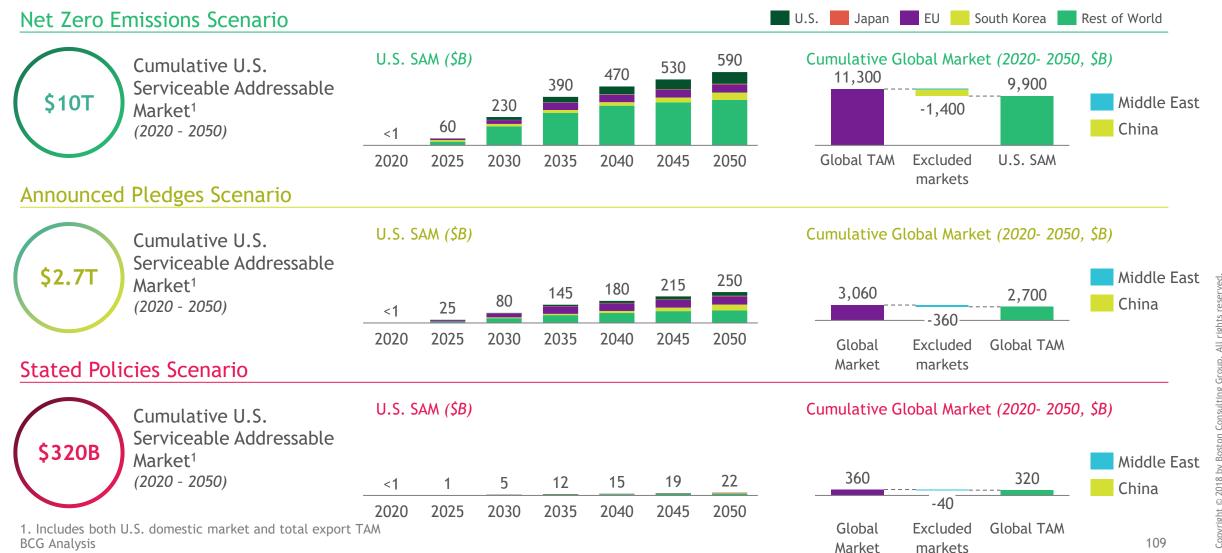


OEM | SAM peaks in ~2030s due to immediate need for ramp up in global capacity to meet decarbonization targets



1. Includes both U.S. domestic market and total export SAM Source: BCG Analysis

Project Development | SAM value heavily dependent on scenario, with SAM peak in early ~2030s to reflect global ramp up in capacity


Transportation & Storage | SAM growth tracks hydrogen demand forecasts

Source: BCG Analysis

Copyright \odot 2018 by Boston Consulting Group. All rights reserved

Offtake | Demand for low-carbon H₂ forecasted to grow regardless of scenario

Transport & Storage | Europe leading in private sector investments and IP, but U.S. has strong position in demand-side policies and infrastructure

	Areas for Competitive Advantage	Ranking	Summary analysis $rightarrow = Key dimension$
	Raw material availability	N/A	Not applicable in segment
☆	Intellectual Property & innovation	Low	 U.S. 4th globally in patent volume for hydrogen transport, distribution and storage (~50) behind Europe (~200), Japan (~150) and China (~150)¹
Ra Ra In In Ra Ie La Ra M Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra	Research & technical leadership	Low	 China's literature publication rate for transportation & storage is over 3X the US. However, average quality of those papers is lower, with an average 14 citations vs. 21 for US publications, suggesting leadership of US work is comparatively higher While publication volume is ~1/3 that of the US, Australia has the highest citation rates of 29, indicating that US research quality is comparable to global leader
Sinter in the second secon	Low operational costs	N/A	Not applicable in segment
	Demand / supply side policy High		 U.S.G is supporting infrastructure through DOE HyBlend initiative addressing barriers to blending H₂ in natural gas pipelines (receiving ~\$15M funding from '20-'22) and Infrastructure bill allocating \$8B for Regional Clean Hydrogen Hubs Japan has pledged ~\$2.8B to developing international supply chains leveraging LOHCs Germany announced 62 large-scale H₂ projects, including pipeline transport, that are up for funding of up to €8 B under the Important Projects of Common European Interest
	Relative domestic market maturity	Low	 Germany has largest private sector investment into hydrogen storage and compressions (~\$140 M), with U.S. second (~\$80 M), and China third (~\$10 M)
Re ma Re ext	Regulatory environment & existing infrastructure	High	 75% of hydrogen salt cavern storage sites operating globally are located in the United States >90% of global hydrogen pipelines are in Europe and the U.S., with ~1,600 miles of dedicated domestic H₂ pipelines
	Overall ranking		U.S. has a strong existing competitive advantage and should maintain it due to strong demand-side policies and existing infrastructure

Source: IEA Global Hydrogen Review 2021; DOE; NREL; A hydrogen strategy for a climate-neutral Europe (8/7/2020)

Project Development | U.S. has strong demand-side policies and high blue H_2 market maturity, but has room to grow in green H_2 project development

	Areas for Competitive Advantage	Ranking	Summary analysis
	Raw material availability	N/A	Not applicable in segment
	Intellectual Property & innovation	N/A	Not applicable in segment
	Research & technical leadership	N/A	Not applicable in segment
\$	Low operational costs	High	• U.S. has significant solar and wind resources, providing access to regional low-cost clean electricity
	Demand / supply side policy	High	 DOE Hydrogen Shot seeks to reduce the cost of clean hydrogen by 80% to \$1/kg H₂ by 2030, which if achieved would drastically incentivize domestic offtake EU policy supports low-carbon hydrogen offtake by setting a 50% target for renewable hydrogen consumption in industry by 2030 in its Fit for 55 package
☆	Relative domestic market maturity	Low	 EU (\$250 M) global leader in early-stage venture capital deals for hydrogen-relates start-ups, with U.S. second (\$150 M) North America is significantly behind in green H₂ project development (7 projects in development), with Asia (603), Europe (295), and Oceania (85) leading the way. However, North America is leading in active blue H₂ projects (3.7Mtpa), with Europe in 2nd place (0.4 Mtpa)
	Regulatory environment & existing infrastructure	N/A	Not applicable in segment
	Overall Ranking		U.S. has a potential to build a durable competitive advantage in project development due to its strong position in key dimensions for this segment such as access to low-cost RE and favorable demand-side policies, but lower durability of export potential

Source: IEA Global Hydrogen Review 2021; DOE; A hydrogen strategy for a climate-neutral Europe (8/7/2020); GlobalData October 2021

OEM | U.S. has strong demand-side policies and market maturity, but falls short in Raw material availability, IP and Skilled workforce

😂 🛛 = Key dimension

	Areas for Competitive Advantage	Ranking	Summary analysis
	Raw material availability	Low	 China and South Africa control over 90% of global mining for critical electrolyser materials (e.g., Pt, Co, Ir, Gd, Ce, Zr) Since 1900, 90% of PGE production has come from South Africa and Russia U.S. is the 5th largest platinum producer in the world
	Intellectual Property & innovation	Low	 US 4th globally in OEM patent volume in hydrogen (434) behind China (1,445), Japan (1,249), and South Korea (696) Despite gap in patent volume, U.S. ranks 3rd in the Global Innovation Index (GII), followed by South Korea (5th), China (12th) and Japan (13th) The manufacturing complexity of electrolysers creates opportunity for significant research breakthroughs. Novel stack composition can have major impacts on efficiency, lifetime, and cost, making IP the most relevant for driving a competitive advantage US companies like Cummins, NextEra, Bloom Energy, and Plug Power making global plays in electrolyser research and manufacturing
	Research & technical leadership	Low	 China's literature publication rate for hydrogen research is over 3X the US. However, average quality of those papers is lower, with an average 24 citations vs. 29 for US publications, suggesting leadership of US work is comparatively higher While publication volume is ~1/3 that of the US, Australia has the highest citation rates of 30, indicating that US research quality is comparable to global leader
	Low operational costs	N/A	Not applicable in segment
☆	Demand / supply side policy	High	 U.S. Infrastructure Bill allocated \$1 B for a Clean Hydrogen Electrolysis Program to reduce costs of producing hydrogen from clean electricity France's "France 2030 Plan" commits \$2 B for green hydrogen production, Germany's National Hydrogen Strategy pledged ~\$7.6 B², while Japan has dedicated ~\$0.7 B for domestic renewable H₂ production, indicating wide range of global commitments, but U.S. can be compared to top players
	Relative domestic market maturity	High	 U.S. private sector leads global investments in electrolysers (\$179 M), followed by China (\$173 M) and Germany (\$156 M) U.S. is dominating in blue hydrogen investments (\$563 M) with China ranking 2nd (\$69)
	Regulatory environment & existing infrastructure	N/A	Not applicable in segment
	Overall Ranking		U.S. has a potential to build a durable competitive advantage due to leading position in blue H ₂ , strong demand-side policies and private sector investments

1. Citation range for top 11 countries with hydrogen academic literature publications is 15.2-30; 2. Subset of funding allocated towards hydrogen production Source: U.S.GS.gov; Global Innovation Index 2021; Elysee.fr; bmwi.de

Offtake | EU leads the way with strong policies and regulatory environment, but U.S. has potential due to low costs and domestic market maturity

	Areas for Competitive Advantage	Ranking	Summary analysis
	Raw material availability	N/A	
	Intellectual Property & innovation	N/A	
	Research & technical leadership	N/A	
	Low operational costs	High	 BH2¹: Access to low-cost natural gas feedstock and energy inputs place the U.S. in a strong position to offer competitively-priced blue hydrogen GH2¹: U.S. has significant solar and wind resources, providing access to regional low-cost clean electricity, which makes up ~45% of the current cost of green hydrogen²
☆	Demand / supply side policy	Low	 U.S. government has not set export, import, or procurement targets for low-carbon hydrogen EU can provide a benchmark for strong hydrogen offtake demand-side policies, region's Fit for 55 package calls for 50% renewable hydrogen consumption in industry by 2030
☆	Relative domestic market maturity	High	 U.S. is one of the world's largest consumers of hydrogen today, accounting for ~13% of global demand, surpassed only by China (~25%)⁴. Potential to substitute low-carbon hydrogen and grow this domestic market is high
	Regulatory environment & existing infrastructure	Low	 U.S. lacks formal standards (e.g., carbon intensity requirements) and regulations (e.g., H2 taxonomy, certificate of origin) for low-carbon hydrogen EU's Certif-Hy program has established hydrogen certification schemes across Europe Australia's Smart Energy Council launched a national Zero Carbon Certification Scheme for low-carbon hydrogen and its derivatives
	Overall Ranking		U.S. has a potential to build a durable competitive advantage due to low operational costs and strong domestic hydrogen demand, creating opportunity for both blue and green hydrogen offtake

 BH2 signifies blue hydrogen (i.e., hydrogen produced from reformation + CCS), GH2 signifies green hydrogen (i.e., hydrogen produced from electrolysis powered by renewables);
 BCG3 Low-carbon Hydrogen cost model;
 IEA Global Hydrogen Review 2021 Source: industry.gov.au; certifhy.eu; consilium.Europa.eu;
 Global Innovation Index 2021

Overview of key assumptions

Assumption	Value	Impact on Calculations	Source
2030 %BH2 ² and %GH2 ² global supply for STEPS, APS, and NZE scenarios hold through 2050	 %BH, %GH: STEPS: 23%, 77% APS: 30%, 70% NZE: 46%, 54% 	The BH2 and GH2 supply assumption determines what proportion of new hydrogen supply projected by the IEA would be low-carbon hydrogen compared to gray hydrogen. This drives production values (Mt H2), which in turn drive all market values and job impact estimates.	IEA World Energy Outlook 2021
2030 total low- carbon H ₂ supply = GH2 + BH2, holds through 2050 across scenarios	Total low-carbon H ₂ supply: • STEPS: 78% • APS: 63% • NZE: 67%	The assumption that low-carbon hydrogen supply is composed of solely green and blue hydrogen forecasts a potentially smaller market for total low-carbon hydrogen, as production of other forms such as turquoise and pink are not sized.	IEA World Energy Outlook 2021 Expert Input
Total final hydrogen consumption is a proxy for total final hydrogen supply ¹	1:1 conversion factor US, Middle East, Japan, China, EU	Impacts the geographic distribution of CAPEX, potentially shifting target markets for OEM and Project Development.	Expert Input

Advanced Nuclear SMR

Advanced Nuclear SMRs | Definition of each segment across value chain

Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations/ Maintenance	Transport & Storage	Offtake	Support Services
Mining and refining of raw materials for:	Intermediate and final manufacturing:	OEM typically identifies potential sites and brings	OEM arranges financing via govt. support, private	OEM typically drives eng. & procurement, often with	Energy generation, management of reactor	New / existing transmission lines (likely to site in areas with	Power produced is injected into the bulk electric system or local	Predictive analytic tools for plant operations & maintenance
Fuels (enriched	Fuel fabrication	projects to	financiers, and	dedicated	operations, and	transmission	microgrid	
uranium, thorium,	(e.g., production of rods, pebbles;	customers (e.g., utilities, govt.)	supply chain partnerships	partners	plant maintenance	access)	High-temperature	Plant monitoring and operations
plutonium)	MOX recycling)	OEM will drive	Given nascent	Construction may be done by a mix	Refueling of	Fuel waste	gas-cooled reactors (HTGRs)	software
Reactor components (coolants such as	Specialized reactor components (I&C,	permitting and regulatory review processes	status, govts. often provide significant	of local vendors (e.g., facility construction) and	modules and fuel waste mgmt	transport / storage	may provide industrial heat	
water / sodium, graphite, steel, etc.)	sensors, valves, etc.)	P	project financing which may be too risky for private	specialized providers (e.g., reactor welding)	Continuous security & site monitoring			
,	Electricity		investors	with regulator	J			
Balance of plant (metals, wiring, concrete, etc.)	generation components (turbines, etc.)			oversight				
	Final SMR factory production (incorporating all components)							

116

Advanced Nuclear Small Modular Reactors | Significant opportunity exists across the SMR value chain, particularly within OEM, raw materials, and EPC

							Additional analysis in Phase 2		? 2
							High Medium	Low	N/A
Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations/ Maintenance	Transport & Storage	Offtake	Suppo Service	
U.S. Serviceable	Addressable Marke	rt, APS (cumulative	2020 - 2050, \$B)						
\$25 - 35B	\$135 - \$165B	\$90 - 110B	\$65 - 80B	\$160 - \$190B	\$380 - \$465B	N/A	N/A	N/A	
Competitive Adv	antage								
Uranium production is highly concentrated, with 6 countries owning ~85% of global production.	SMR OEM is highly concentrated, early technology, with significant govt. support and technical know- how required	Project dev. has significant govt., support, requires in-depth technical knowledge, and is still in very early stages of growth	Access to financing is very limited, with significant capital provided today from government entities	Highly- concentrated OEMs drive large parts of EPC, while technical expertise is needed by anyone involved	Access to skilled / certified labor is a necessity for nuclear O&M O&M training is key to enabling exports to markets with little nuclear experience	Transport will generally be via pre-existing high-voltage regional transmission networks	Offtake is highly local in nature, either to regional electricity markets or standalone microgrids / industrial users	Ability to of support serv is highly lim by strict ops and mainter regulations which vary l country	vices nited s. nance
Societal / socio-e	conomic impact (c	umulative job-yea	rs created 2020-20	050 from APS U.S. S	50М)				
35K - 55K new domestic job-years	60K - 75K new domestic job-years	155K - 190K new domestic job-years	45K - 60K new domestic job-years	350K - 430K new domestic job-years	850K - 1,000K new domestic job-years	N/A	N/A	N/A	
									11

Offtake

Low

Support Services

N/A

 OEM
 Project
 Financing
 EPC
 Operations/ Maintenance
 Transport & Storage

High

Medium

DESCRIPTION OF TECHNOLOGY

Raw materials & inputs for SMRs include fuels such as uranium (or plutonium/thorium), coolants (such as fluoride salts, helium, or lead), moderators (such as graphite), and other materials which comprise the "balance of plant" (such as steel, concrete, rubber, wiring, etc.)

C25 25	MARKET DYNAMICS						
\$25 - 35		2020	2030	2040	2050		
Cumulative APS US SAM	US SAM (\$B, APS)	-	<\$1B	\$1 - 2B	\$2 - 3B		
(\$B, '20-50)	Margin (%)	-	30 - 60%	30 - 60%	30 - 60%		

VALUE PROPOSITION

There is significant potential competitive advantage in the uranium mining and enrichment processes due to concentration of the world's uranium reserves and enrichment capacity, creating opportunity for new entrants. New areas, such as recycled fuels (MOX) and HALEU, may also show potential for new entrants

EVALUATION Market Competitive Advantage Societal Impact

COMPETITIVE ADVANTAGES		
Input material availability & concentration	Uranium production is highly concentrated, with 6 countries owning ~85% of global production [.] While potential exists to recycle spent fuel or repurpose weapons-grade uranium, majority of fuel is from mining activities	Н
Existing regulatory env. supportiveness	Relevant companies, particularly in uranium mining and enrichment, are often state-owned / supported ²	Μ
Providers/supplier concentration	~85% of Uranium production is owned by ~10 companies, mostly state-owned	Μ
IP & relevant technical expertise availability	Nuclear enrichment is a highly technical process, though the knowledge is generally widely known across players	L
Pricing advantage potential	Uranium is a global commodity, with associated spot and future markets	L

1. Based on demonstrated margins by pure-play uranium enrichment mining and enrichment companies (e.g., Urenco) 2. Russia is a dominant player in both uranium mining and enrichment Note: All values reflect the estimated potential market for enriched uranium to fuel SMR and advanced nuclear SMR plants Source: BCG Analysis; World Nuclear Association

N/A

Low

Raw materials & OEM Project Inputs OEM Development Financing EPC Operations/ Transport & Offtake Support Storage Offtake

Medium


High

Advanced Nuclear SMRs | OEM

DESCRIPTION OF TECHNOLOGY

Includes the manufacturing and fabrication of fuels, intermediate components, power generation equipment (e.g., turbines), and the final reactor modules prior to on-site installation. Fuels fabrication includes assembly into fuel rods / pebbles, depending on the specific SMR technology

C42E 47E	MARKET DYNAMICS						
\$135 - 165		2020	2030	2040	2050		
Cumulative APS US SAM	US SAM (\$B, APS)	-	\$3 - 4B	\$7 - 8B	\$3 - 4B		
(\$B, '20-50)	Margin (%)	-	10 - 15%	10 - 15%	10 - 15%		

VALUE PROPOSITION

OEM presents a clear opportunity to build competitive advantage in a high-value area, both for reactor modules as well as associated fuel fabrication. While fuel fabrication is largely established and concentrated, SMR OEMs are still quite nascent, with several U.S. companies among global leaders

EVALUATION		
Market	Competitive Advantage	Societal Impact

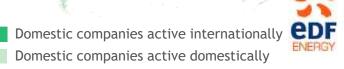
COMPETITIVE ADVANTAGES		
Existing regulatory env. supportiveness	Multiple countries are current directly subsidizing R&D for SMR designs	н
Providers/supplier concentration	Both fuel and SMR production are highly concentrated, with few players	н
IP & relevant technical expertise availability	SMR designs are nascent, with early movers (e.g., NuScale) gaining clear first-mover advantage	Н
Trained/skilled labor force availability	Manufacturing of SMRs is likely to require highly skilled and certified labor, similar to large-scale plants	Н
Financing access	Financing for both R&D and module production facilities is a key challenge facing OEM players due to a lack of demonstrated demand and proven projects. Govt. financing has been key to overcoming this "valley of death" for new technologies in the U.S. and other countries	Н
Pricing advantage potential	Minor potential to build advantage around labor and component cost inputs between countries	L

Raw materials & Operations/ Transport & Storage Support Services EPC Offtake Financing

Advanced Nuclear SMRs | Project Development

DESCRIPTION OF TECHNOLOGY

GLOBAL PLAYERS - COUNTRIES


Project development for SMRs has largely been driven by the OEM, though once producing at scale, this model may change to be more like solar / wind. Primary challenges include site identification, significant permitting and regulatory review processes, origination (typically with utilities), and arranging financing

¢00 400	MARKET DYNAMICS					
390 - 100		2020	2030	2040	2050	
Cumulative APS US SAM	US SAM (\$B, APS)	-	\$2 - 3B	\$4 - 6B	\$2 - 3B	
(\$B, '20-50)	Margin (%)	-	10 - 15%	10 - 15%	10 - 15%	

COMPANIES

M

NUSCALE

🔉 🚳 нітасні	E N E R G Y
st 🙆	
	中国国电

Westinghouse

R

SMR

CHINA GUODIAN

VALUE PROPOSITION

Given the significant barriers posed by regulatory review/permitting and financing, early govt. intervention can enable a more robust domestic development ecosystem. Emerging trends point to potential for development to extend overseas, making a first-mover advantage valuable (e.g., NuScale)

EVALUATION Competitive Advantage Societal Impact Market

COMPETITIVE ADVANTAGES		
Existing regulatory env. supportiveness	Govt. support, both direct project cost- sharing and expedited permitting / regulatory review programs, can provide much-needed support	Н
Providers/supplier concentration	Given the small number of regional players today first movers in project development can gain a large advantage	Н
Trained/skilled labor force availability	Highly technical aspects of development (e.g., site risk assessments, permitting) require skilled labor to perform	Н
Market ecosystem maturity	While current projects are typically developed by domestic players, early leaders (e.g., NuScale) are beginning to build a global market via international development opportunities	L

120

Low

N/A

Medium

High

Advanced Nuclear SMRs | Financing

DESCRIPTION OF TECHNOLOGY

Financing is a key challenge for the nuclear industry, including SMRs. Given the high upfront fixed costs, long development timeline, and significant construction risk given the highly complex and technical asset, financing such projects can be costly, particular for new SMR technologies. Govt. financing from the U.S. Ex-Im Bank¹ is used for nuclear exports today

Č(E 00	MARKET DYNAMICS						
\$65 - 80 Cumulative APS US SAM (\$B, '20-50)		2020	2030	2040	2050		
	US SAM (\$B, APS)	-	\$1 - 2B	\$3 - 4B	\$1 - 2B		
	Margin (%)	-	8 - 12%	8 - 12%	8 - 12%		

Governments provide SMR project financing support Governments have provided R&D financing support

VALUE PROPOSITION

Given the capital intensity of SMRs, financing is a key challenge which govt. support can mitigate. Subsidized loans for projects can help de-risk the development of SMRs, helping to nurture a robust domestic market. Export banks can create competitive advantage by providing low-cost debt for projects developed abroad

EVALUATION Market Competitive Advantage Societal Impact

COMPETITIVE ADVANTAGES SMR project financing for pilot projects often includes funds from govt. entities, such as the DoE, through cost-sharing programs. Remaining financing comes from a mix of the OEM, supply chain partners, and the project customer (e.g., utilities). Other countries, notably China, provide support for state-owned companies which are also dedicating significant resources to SMR development. **Financing access** Other projects, such as the Ontario Power Generation project with GEH, will be largely customer-financed similar to conventional nuclear plants. In this case, the utility customer uses balance sheet financing with some degree of guaranteed cost recovery from rate payers. Govt. subsidized loans are used to help assuage regulator concerns and provide a potential benefit to ratepayers

1. U.S. Export-Import Bank 2. Margins represent ranges for typical U.S. utility cost of capital who would typically finance conventional nuclear builds Source: BCG Analysis

Raw materials & OEM Project Development Financing EPC Operations/ Transport & Offtake Support inputs Offtake Support

High Medium Low

N/A

Advanced Nuclear SMRs | EPC

DESCRIPTION OF TECHNOLOGY

SMR EPC involves final on-site plant engineering, procurement, and construction of factoryproduced reactor modules, power plant generation equipment, and site facilities. Final onsite construction will typically require regulator oversight and inspection. OEMs typically drive eng. & proc., while local construction vendors are often used

C1(0 100	MARKET DYNAMICS						
\$160 - 190 Cumulative APS US SAM		2020	2030	2040	2050		
	US SAM (\$B, APS)	-	\$1 - 2B	\$3 - 4B	\$1 - 2B		
(\$B, '20-50)	Margin (%) ¹	-	5 - 8%	5 - 8 %	5 - 8%		

GLOBAL PLAYERS - COUNTRIES

COMPANIES

Not applicable OEMs typically partner with local/regional players as needed

VALUE PROPOSITION

OEMs will typically own the highest-value engineering and procurement portions of EPC, while the construction will often be done by qualified local/regional vendors. As such, there is particular value in focusing on the OEM-owned portions of EPC for potential export

EVALUATION Market Competitive Advantage Societal Impact

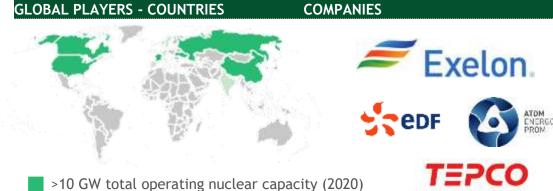
OMPETITIVE ADVANTAGES		
Providers/supplier concentration	The highly-concentrated OEMs are typically very involved in Eng. & procurement, while actual construction is contracted out to qualified local vendors	
IP & relevant technical expertise availability	Final site eng. design will typically be done by the OEM and would require significant technical knowledge	
Trained/skilled labor force availability	Final plant assembly may require some certified / specific types of labor, however large portions (e.g., cement) are fairly standardized and easy to access	
Pricing advantage potential	Given high degree of labor, local variations in labor costs can provide some degree of competitive advantage for SMR installation and site preparation. Experienced EPCs may reduce costs by avoiding delays / budget overruns	

Advanced Nuclear SMRs

Support Services

Advanced Nuclear SMRs | Operations & Maintenance

High Medium N/A Low


Transport &

Offtake

DESCRIPTION OF TECHNOLOGY

Similar to large reactors, SMRs will likely be operated and maintained by the owning entity (e.g., utilities). This typically entails 24/7 plant monitoring, proactive maintenance, and periodic module refueling. Reactor maintenance is typically done during plant refueling outages, while the surrounding safety and generation components are constantly maintained

C200 4/F	MARKET DYNAMICS						
\$380 - 465		2020	2030	2040	2050		
Cumulative APS US SAM	US SAM (\$B, APS)	-	\$3 - 5B	\$20 - 25B	\$30 - 35B		
(\$B, '20-50)	Margin (%)	-	5 - 15%	5 - 15%	5 - 15%		

5-10 GW total operating nuclear capacity (2020)

VALUE PROPOSITION

While important, given the market size and the general availability of the skilled labor needed O&M is unlikely to be an area for long-term competitive advantage in the SMR space. Each plant is likely to be operated and maintained locally, reducing the long-term potential and attractiveness of the space

Project

Developmen

Financing

materials &

OFM

EVALUATION Competitive Advantage Societal Impact Market

COMPETITIVE ADVANTAGES		
Trained/skilled labor force availability	O&M for nuclear plants will require a broad range of skilled labor inputs, such as engineers, electricians, welders, etc. In the U.S., some of these skills require specific regulatory certification to ensure that maintenance is of sufficient quality to maintain safety	Μ

N/A

Low

Medium

Advanced Nuclear SMRs | Transport & Storage

DESCRIPTION OF TECHNOLOGY

Power produced by SMRs will typically be transported using bulk electric system high-voltage transmission lines. While major upgrades to the transmission networks are needed, particularly to integrate renewables, it is difficult to gauge the impact from SMRs. In some cases, SMRs may form the backbone for local micro-grids not connected to the bulk electrical system

Г		MARKET DYNAMI	CS			
	N/A		2020	2030	2040	2050
	Cumulative APS US SAM	US SAM (\$B, APS)		Not ar	plicable	
	(\$B, '20-50)	Margin (%)	Not applicable			

GLOBAL PLAYERS - COUNTRIES

COMPANIES

Not applicable Transmission will be provided by the local utility and/or regional system operator (e.g., ISO/RTO)

VALUE PROPOSITION

Given the large amount of overlap for transmission infrastructure with other industries, there is little direct opportunity related to transport and storage for SMRs

High

EVALUATION

Market Competitive Advantage Societal Impact

Raw materials &

Existing regulatory env. supportiveness	While permitting is a key challenge for transmission system expansion, regulatory efforts to ease transmission development challenges do not provide a material opportunity to build SMR competitive advantage	N/
Relevant infrastructure potential	Given high-voltage electric transmission infrastructure is in place in all major world economies, there is little opportunity to create competitive advantage in this space	N/

Low

N/A

Medium

Advanced Nuclear SMRs | Offtake

DESCRIPTION OF TECHNOLOGY

SMR offtake will typically be electricity production or industrial heat. Zero-carbon electricity can be injected into the grid or can provide power for specific microgrids or assets, such as green H_2 electrolyzers. Industrial heat requires High-Temperature Gas-Cooled (HTGR) reactor SMRs, which create far more heat than LWR SMRs, and can decarbonize industrial processes

	MARKET DYNAMICS					
N/A		2020	2030	2040	2050	
Cumulative APS US SAM	US SAM (\$B, APS)		Nota	plicable		
(\$B, '20-50)	Margin (%)		ΝΟΓ Δμ	oplicable		

GLOBAL PLAYERS - COUNTRIES

COMPANIES

Not applicable Highly local nature of electricity offtake means that all SMRs will require access to transmission infrastructure VALUE PROPOSITION

Due to the regional or local nature of SMR offtake, there is little opportunity to build competitive advantage in the space. Electricity markets are highly regional, highly regulated, and well-established, while industrial heat offtake is often project-specific

EVALUATION

Market

Competitive Advantage Soc

High

Socie		m n n h
Socie	rai im	DACE

COMPETITIVE ADVANTAGES						
Market ecosystem maturity	While electricity markets are well- established, they are typically quite regional in nature, making it quite difficult to establish competitive advantage in offtake (such as in the U.S.). Similarly, industrial heat offtake or microgrids will be highly localized, often at the project-specific level, inhibiting the establishment of a broader competitive advantage	N/A				

Low

N/A

Medium

High

Advanced Nuclear SMRs | Support Services

DESCRIPTION OF TECHNOLOGY

While SMR technology is too nascent to have proven support services, the large reactor space offers some insights. Support services would likely be software-based tools for plant O&M, such as predictive analytics to inform maintenance or automated operations software. Country-specific regulations may hinder the growth of these areas, however, to ensure plant safety

	MARKET DYNAMICS						
N/A		2020	2030	2040	2050		
Cumulative APS US SAM (\$B, '20-50)	US SAM (\$B, APS)	Not applicable					
	Margin (%)	Not applicable					

GLOBAL PLAYERS - COUNTRIES

COMPANIES

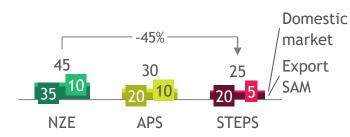
Not applicable

Support services opportunities will vary by country based on local nuclear regulations and may require changes to current requirements

VALUE PROPOSITION

Support services are unlikely to present a significant opportunity in the SMR space. Due to stringent safety requirements for nuclear plant operations uptake of similar services has been low for large-scale reactors, and significant variability across countries inhibits potential for broad advantage abroad

EVALUATION Market Competitive Advantage Societal Impact

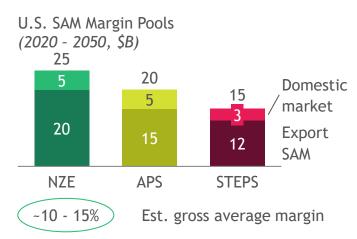

COMPETITIVE ADVANTAGES Disparate nuclear regulations across countries will likely inhibit broad competitive advantage across countries, while strict domestic regulations present a high barrier to entry. Existing regulatory env. For example, in the U.S. strict regulations N/A supportiveness dictate how plants are operated and maintained, while in France passive safety systems are not permitted. Such differences would result in different types of support services in different countries, making it difficult to provide across borders Several similar tools are already in place for IP & relevant technical other types of generation assets (e.g., N/A expertise availability CCGTs, etc.), however regulations have prevented widespread uptake

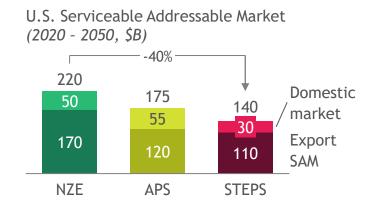
OEM offers strong U.S. market opportunity across scenarios, though market potential falls ${\sim}20$ - 40% from the Net Zero Emissions scenario

U.S. Serviceable Addressable Market

Raw materials

U.S. Serviceable Addressable Market (SAM) (2020 - 2050, \$B)

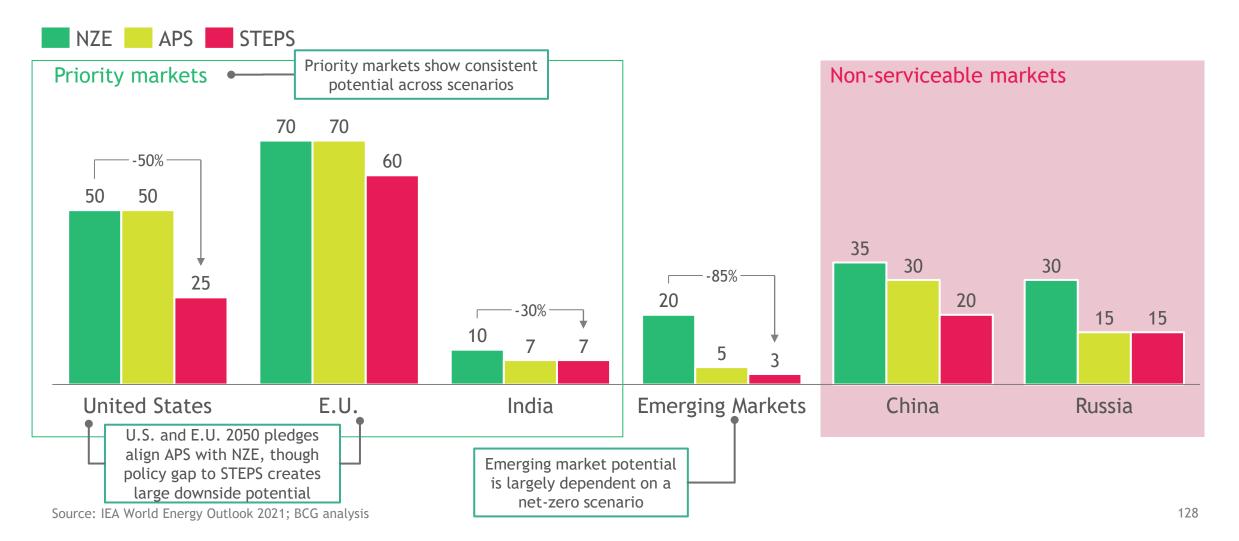



OEM

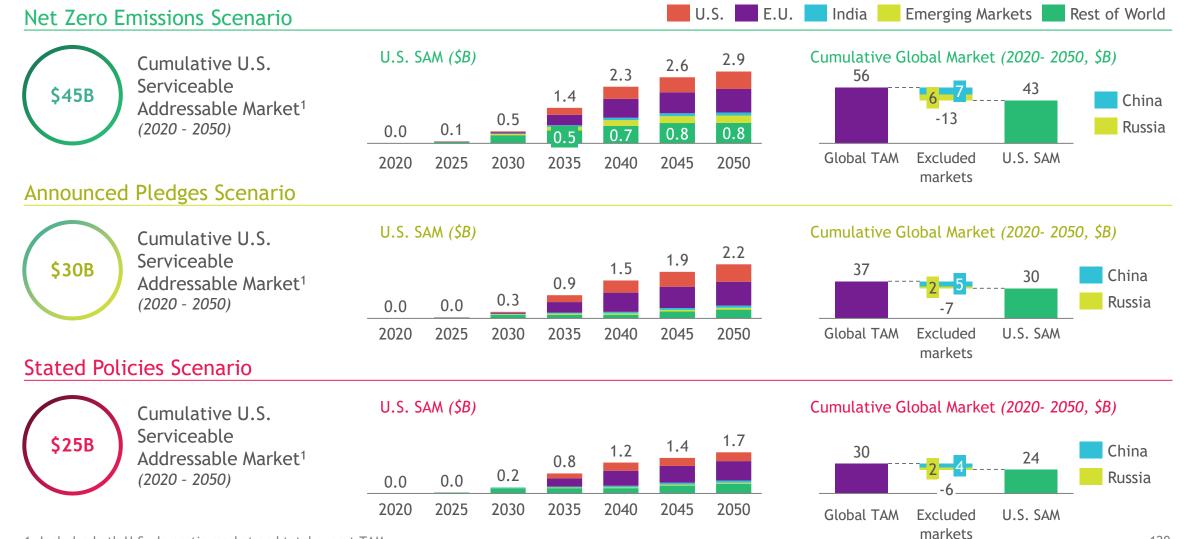
(2020 - 2050, \$B)

-40% 190 Domestic 150 45 market 120 50 25 Export 145 100 95 SAM NZE APS **STEPS**

EPC

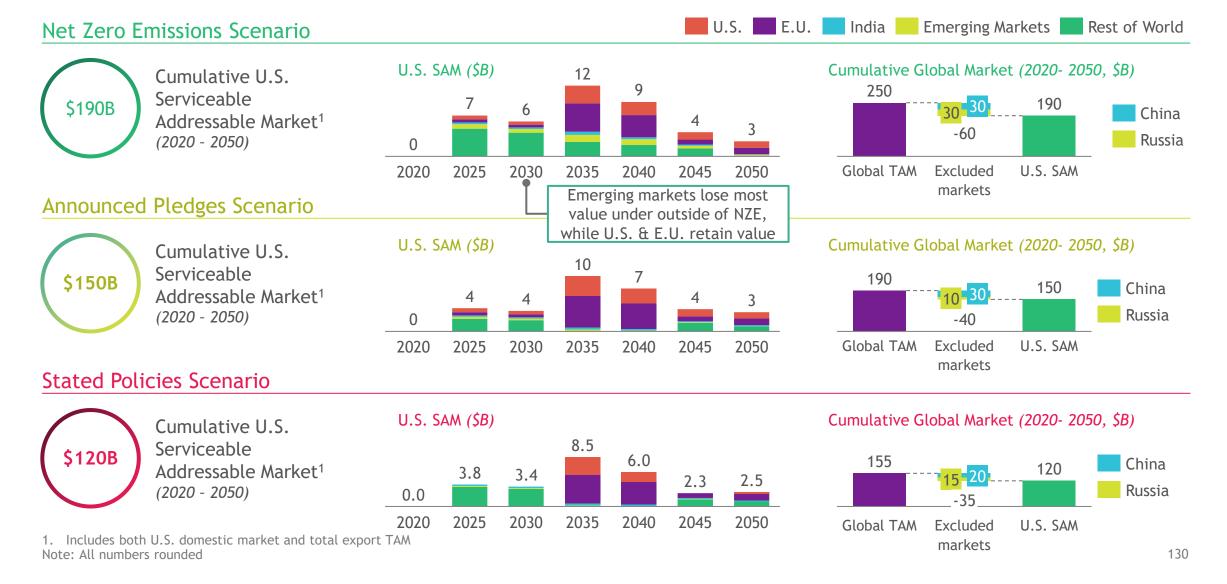

U.S. SAM Margin Pools (2020 - 2050, \$B)

Note: All numbers rounded Source: BCG analysis


The U.S., E.U., and Indian markets present greatest potential for SMR deployment across scenarios

Installed SMR capacity through 2050 by market and scenario (GW)

Raw materials | NZE scenario has ~2x expected growth of APS and STEPS


US and Indian markets each account for 10-20% of SAM, while E.U. accounts for an additional ~20-40%

1. Includes both U.S. domestic market and total export TAM

OEM | Market value is expected to peak 2030 - 2040 across scenarios

U.S. & E.U. retains value outside NZE as aging nuclear is replaced, while emerging markets lose most value

EPC | Similar to OEM, market value peaks 2030 - 2040 across scenarios

E.U. drives significant growth, particularly in the APS and STEPS scenarios as other markets decline

E.U. India Emerging Markets U.S. Rest of World Net Zero Emissions Scenario U.S. SAM (\$B) Cumulative Global Market (2020- 2050, \$B) 14 Cumulative U.S. 290 11 Serviceable 220 \$220B 40 30 China Addressable Market¹ -70 Russia (2020 - 2050)0 2020 2025 2030 2035 2040 2045 Global TAM Excluded U.S. SAM 2050 markets Emerging markets lose most **Announced Pledges Scenario** value under outside of NZE, while U.S. & E.U. retain value U.S. SAM (\$B) Cumulative Global Market (2020- 2050, \$B) Cumulative U.S. 11 Serviceable 9 220 \$175B 175 China Addressable Market¹ 5 Russia (2020 - 2050)-45 0 2020 2025 2030 2035 2040 2045 2050 Global TAM Excluded U.S. SAM markets **Stated Policies Scenario** U.S. SAM (\$B) Cumulative Global Market (2020- 2050, \$B) Cumulative U.S. 10.0 Serviceable \$140B 7.0 180 China Addressable Market¹ 140 4.5 4.0 10-30 2.9 2.7 Russia (2020 - 2050)0.0 -40 2020 2025 2030 2035 2040 2045 2050 Global TAM Excluded U.S. SAM

1. Includes both U.S. domestic market and total export TAM

markets

Raw Materials | The U.S. does not hold a clear advantage in the strategic uranium enrichment space, though DOE programs are seeking to close the gap

	Areas for Competitive Advantage	Ranking	Summary analysis	😭 = Key dimension
☆	Raw material availability	Low	• The U.S. has produced <5% of the world's raw uranium since 2011, with the value decreasing steadily s in 2020. Further, the U.S. possesses <10% of the world's uranium enrichment capacity, while Russia and 30% of global enrichment capacity, respectively	
	Intellectual Property & innovation	Low	 U.S. ranks 5th globally in patent volume related to nuclear fuel production, behind China, Japan, Russi maintains a significant lead, with nearly ~14x the patents as the U.S. and ~7x the patents of Japan and Despite gap in patent volume, the U.S. ranks 3rd in the Global Innovation Index (GII), followed by Franc Japan (13th), and Russia (45th) Majority of IP is driven by Chinese research institutions and vertically integrated uranium players (e.g. 	d Russia ce (11 th), China (12 th),
	Research & technical leadership	High	 Although China maintains a ~1.5x lead over the U.S. in terms of research paper volumes, U.S. research the most prolific single research institute in the space globally. Further, the U.S. maintains a slight edge in research quality compared to Chinese research based on c 	
	Low operational costs	N/A	Not applicable in segment	
	Demand / supply side policy	High	• The U.S. DOE was authorized under the Energy Act of 2020 to launch the HALEU Availability Program t in nuclear fuel supply infrastructure to enable access to commercially available HALEU for advanced r	
☆	Relative domestic market maturity	Low	 Canadian, Russian, and French players comprised the majority of investment into the fuel supply chair U.S. players made few investments, though the DOE ARDP recently announced a cost sharing program HALEU-based TRISO fuel for advanced reactors 	
☆	Regulatory environment & existing infrastructure	High	• While the U.S. has limited uranium enrichment capacity for civilian nuclear reactors, the DOE's Nation Administration (NNSA) enriches uranium to a range of levels, primarily to support defense missions (e. program). This technical talent and know-how could likely be leveraged to support a domestic civilian	g., Naval Reactors
	Overall ranking		U.S. has low competitive advantage potential today, largely due to a lack of domestic c capacity and a lack of a mature market to incentivize private investment, but has strong	

OEM | The U.S. holds an early lead in the SMR OEM space across relevant dimensions

	Areas for Competitive Advantage	Ranking	Summary analysis	😒 🛛 = Key dimension
	Raw material availability	N/A	Not applicable in segment	
	Intellectual Property & innovation	High	 The U.S. maintains a slight, early lead in SMR-related patents, closely followed by South Korea (2nd) Reinforcing this early lead, the U.S. ranks 3rd in the Global Innovation Index (GII), followed by Korea Large nuclear players, such as Westinghouse or China's CNNC, tend to drive patents, potentially impl to SMR IP commercialization 	(5 th) and China (12 th)
	Research & technical leadership	High	 The U.S. maintains a slight lead in the publication of SMR-related papers (~70), followed closely by C U.K. and South Korea (~25 each). Notably, both Iran and Canada are also active on the topic (~18 each) The U.S. also leads in terms of research quality, measured in terms of average citations 	
	Low operational costs	Low	• U.S. labor is generally costlier than other markets (e.g., China), both for R&D / engineering roles as	well as manufacturing labor
	Demand / supply side policy	High	 The U.S. DOE Advanced Reactor Demonstration Program (ARDP) funds multiple advanced reactor tec of the design lifecycle, from initial designs to demonstration plants (such as TerraPower and X-Energ State-level clean energy targets also encourage the buildout of new nuclear capacity as aging plants 	(y)
	Relative domestic market maturity	High	 U.S. companies lead private investment in the SMR space, totaling ~3 - 4x the investment made by the are 2nd and 3rd in private investment, respectively 	he U.K. and Canada, which
	Regulatory environment & existing infrastructure	High	 The U.S. has the largest operating nuclear fleet in the world, enabling a relatively robust domestic in technical and commercial expertise Likewise, the U.S. DOE and Nuclear Regulatory Comission (NRC) are generally viewed as the gold stan and licensing globally, giving U.Sbased companies a boost in terms of credibility and reputation abore. Coal plant retirements present the U.S. with a unique opportunity to rapidly deploy SMRs by leverage infrastructure (e.g., water access, transmission interconnections, etc.) 	ndard in nuclear research orad
	Overall ranking		U.S. found to have competitive advantage potential due to early leadership in IP, resear commercialization of domestic technologies	arch, and

EPC | The U.S. lacks competitive advantage in the EPC space

Areas for Competitive Advantage	Ranking	Summary analysis 😒 = Key dimension
Raw material availability	N/A	Construction materials (e.g., cement) are widely available
Intellectual Property & innovation	N/A	EPC competitive advantage is not driven by patents
Research & technical leadership	N/A	• EPC competitive advantage is not driven by research paper publication
Low operational costs	Low	U.S. labor costs are typically higher than other countries
Demand / supply side policy	N/A	• EPC competitive advantage is not driven by policies
Relative domestic market maturity	Low	 The U.S. has little investment in the nuclear EPC space, which is primarily lead by countries building new capacity such as China (which makes up ~40% of planned capacity), India (~12%), and Korea (~10%) Further, recent U.S. new nuclear builds have had significant timeline delays and budget overruns while projects in other markets (e.g., China, Korea) have generally been completed on time and on budget, which does not reflect positively on U.S. EPC players
Regulatory environment & existing infrastructure	Low	• A lack of recent nuclear new build activity in the U.S. has limited the ecosystem for nuclear EPC players, as shown by difficulties in recent new builds (e.g., Vogtle)
Overall ranking		U.S. found to have low competitive advantage in EPC due to highly mature market relative to others but low activity in the IP / research space

134

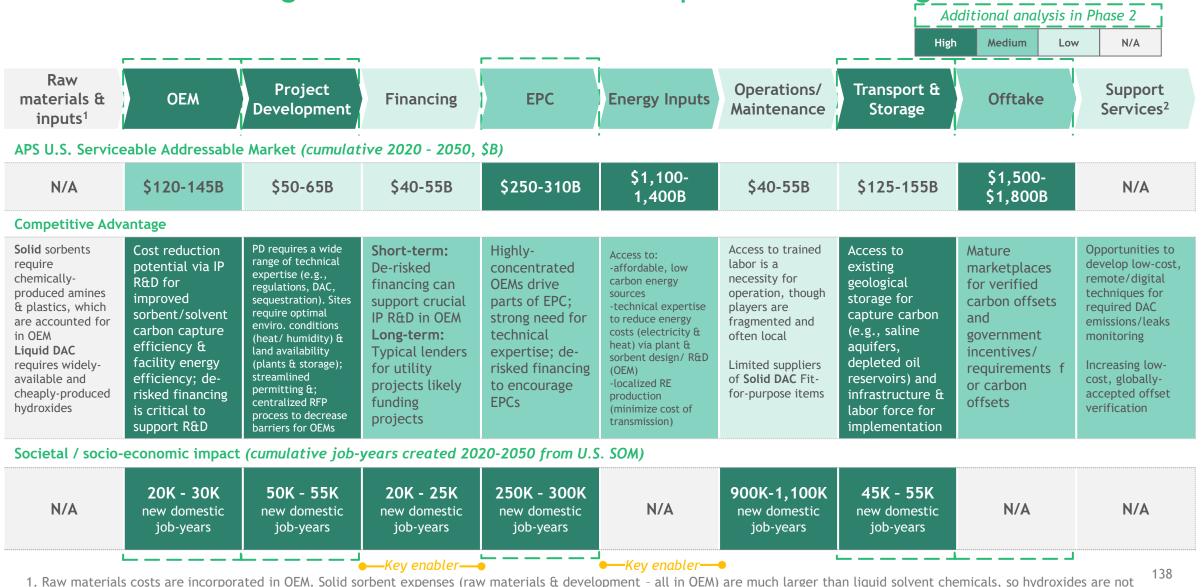
Overview of key assumptions

Assumption	Value	Impact on Calculations	Source
Projections of nuclear capacity additions	Varies by year, market, and scenario	Forecasted nuclear capacity additions form the base of the model, impacting the total SMR capacity deployed, segment-specific market values, and in turn job growth potential. Current IEA inputs are viewed as conservative, as the IEA projections were based on historical nuclear costs and do not account for the potential cost decreases targeted by SMR vendors	IEA 2021 World Energy Outlook
Est. SMR penetration projections	Varies by market	Once the total nuclear capacity additions are estimated per market, an estimated SMR penetration is applied to calculate the new nuclear capacity which would be from SMRs as opposed to conventional large-scale nuclear. The total new SMR capacity is then used to calculate market values per value chain segment	Nuclear Energy Agency; ¹ Expert input
SMR installed costs	First of a Kind (FOAK) = ~\$4,770/kW Nth of a Kind (NOAK) = ~\$2,550/kW	The SMR installed costs are applied to the estimated SMR capacity additions to calculate total spend to install new SMR capacity built over time. This largely applies to the OEM, project development, financing, and EPC segments which are directly tied to the construction of new SMR capacity. All values reflect the average cost calculated using multiple SMR designs	Energy Information Reform Project; ² BCG analysis ³
Year NOAK costs are achieved	NZE = 2040 APS = 2045 STEPS = 2050	The rate of cost decline is determined by calculating the CAGR needed to achieve the NOAK cost by the target year. This determines the estimated installed cost in each year, which is applied to the SMR capacity deployed in that year to calculate the total installed costs across OEM, project development, financing, and EPC segments	Expert input

1. Nuclear Energy Agency (NEA) - Small Modular Reactors: Nuclear Energy Market Potential for Near-term Deployment 2. Energy Innovation Reform Project -What Will Advanced Nuclear Plants Cost? 3. Based on BCG work with an SMR player, assuming a learning rate of ~10% based on demonstrated learning rates for similar technologies per installed cost driver, for total reduction of ~40-50% in costs

DAC

DAC | Definition of each segment across value chain


Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations/ Maintenance	Transport & Storage	Offtake	Support Services
Natural resources used for: Solid sorbent (alkanolamines, chemically- produced) Liquid solvent (alkali, alkaline earth metal hydroxides - often potassium or sodium hydroxide)	Manufacturing & designing technology Solid sorbent & liquid solvent: • Amine- based sorbent Plant components: • Air contactor fan • Compressor • Steam/ vacuum chamber • Pellet reactor • Slaker • Calciner • Heat	 Project origination & coordination Site selection: Humidity Temp. Large, uninhabited space Permissions & contracting Secure financing Energy inputs (currently, mix of RE and natural gas) 	Full financing capital stack for large-scale projects Significant grant funding from DoE Private equity, venture capital investment, grants, and voluntary offsets to encourage innovation Government grants, favorable loans for R&D	Engineering, procurement & construction (outsourced or inhouse) • Solid - detailed eng. design fit for purpose • Liquid - detailed eng. design that combines existing components • Supply chain mgmt • Contractor mgmt. • System testing	 Operations & maintenance Sorbent/solvent regeneration Baseline operations Asset monitoring Maintenance & repairs 	Logistics of compressed CO2 delivery Long-term storage: • Saline aquifers • Depleted oil wells • Injection machinery Local transport logistics: • Pipeline • Pumps	End usage for either carbon offsets or CO2 gas (e.g., EOR, synfuels) • Final offtake contracting • Sales channels / markets	Differentiated offerings to ensure offset quality & expand DAC plant creation E.g.,: • Auditing / certification • Technology licensing

regenerator

137

Copyright \odot 2018 by Boston Consulting Group. All rights reserved.

DAC | Increasing capture efficiency, early deployment of DAC, & capitalizing on available storage would build durable competitive advantage

Offtake

Support Services

Operations/

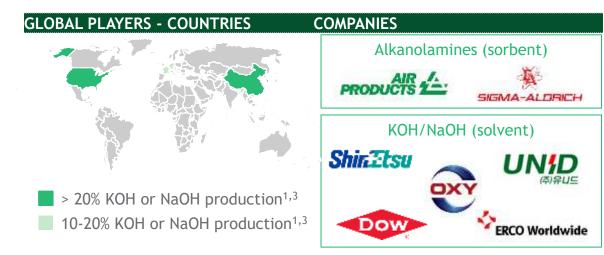
Maintenance

cost-effective², but existing production is not

yet at the scale needed for DAC

Transport &

Storage


DAC | Raw Materials

DESCRIPTION OF TECHNOLOGY

Solid sorbent: Alkanolamine polymers for amine-based coating (made from amines and alkylene oxide)

Liquid solvent: Potassium and/or sodium hydroxide solutions

	MARKET DYNAMICS	5			
N/A		2020	2030	2040	2050
Cumulative APS U.S. SAM (\$B, '20-50)	APS U.S. SAM (\$B) Margin (%)		Incorpora	ted in OEM	

		High	Medium	Low	N/A	
VALUE PROPOSITION						
Widely-available and cheaply for liquid DAC, though presen Though regularly produced, i scale or tailored appropriate sorbents (big unlock) falls un	nt little opportu nitial chemicals ly for DAC. Cust	inity for du for solid s comization	rable com orbent are and increa	petitive ac e not curre sed effica	lvantage. ntly to cy of	
EVALUATION						
Market	Competitive A	dvantage	Societ	al Impact		
COMPETITIVE ADVANTAGE	ES					
Input material availability &	Solid: access to processed alkanolamine plastics for sorbent					
concentration	Liquid: access to widely-available hydroxides (e.g., Global production of KOH is dominated by the US, 27%, and China, 24%) ¹					
Providers/supplier concentration	Consistent access to fit-for-purpose components (especially for solid sorbent), currently from few suppliers partnered with OEMs					
Relevant infrastructure	Alkylene ox production				nd L	

EPC

Financing

Energy Inputs

Project Developmen

OEM

potential

Copyright © 2018 by Boston Consulting Group. All rights reserved

DAC | OEM

DESCRIPTION OF TECHNOLOGY

Chemical and mechanical equipment for carbon capture: air contactor fans

Solid: chemical production of alkanolamines-based structures, which require further development to improve sorbent lifetime and overall carbon capture efficiency; **liquid:** alkali/alkaline earth metal hydroxides

Plant design for improved heat regeneration and overall improved energy efficiency

\$420 44ED	MARKET DYNAMICS							
\$120 - 145B Cumulative APS U.S. SAM (\$B, '20-50)		2020	2030	2040	2050			
	APS U.S. SAM (\$B)	-	0-2	1-5	25-35			
	Margin (%) ¹	-	10-15%	10-15%	10-15%			

High Medium Low

N/A

VALUE PROPOSITION

Opportunities exist to create defendable and high value IP, given de-risked financing for R&D. Improved efficiency of carbon capture technology is critical for developing DAC at scale. Current sorbents have short lifetime and inefficient carbon capture. Sorbents and solvents also must be heated to release captured carbon; R&D could reduce solid/sorbent temperature requirements for carbon release or increase plant regeneration of heat and, by extension energy requirements. Capture also relies on mechanical fans, but plant design optimization can reduce energy needs (e.g., Heirloom's passive capture). High quality solid sorbents can be exported and technology for sorbent development and plant design can be exported.

EVALUATION						
Market	Competitive Advantage	Societal Impact				
COMPETITIVE ADVANTAGE	ES					
Input material availability & concentration	solid sorbent or Climewor	Solid: Access to fit-for-purpose components (i.e., solid sorbent or Climeworks air contactor fan ²) Liquid: Access to widely-available hydroxide solutions				
Providers/supplier concentration	4 dominant players in OEM: Climeworks, Carbon Engineering, Sustaera, & Global Thermostat, with ~dozen smaller and emerging players based on next-generation technologies (many in the U.S.) that could unlock DAC potential at scale with lower energy and facility footprint requirements					
IP & relevant technical expertise availability	R&D opportunity to creat	e IP to: re and lifetime of both id solvent / efficiency (energy	Н			
Financing access	Government and private financial support neede for R&D of carbon capture technologies Funding to improve quantity of affordable, renewable heat energy (e.g., geothermal for Climeworks)					

Offtake

Support

Services

DAC | Project Development

DESCRIPTION OF TECHNOLOGY

Development & coordination, including site selection, permissions & contracting (EPC, operators), initial designing/engineering for facility planning, securing financing, ensuring access to affordable energy

ČEO (ED	MARKET DYNAMICS							
\$50 - 65B Cumulative APS U.S. SAM (\$B, '20-50)		2020	2030	2040	2050			
	APS U.S. SAM (\$B)	-	0-0.5	0.5-5	10-15			
	Margin (%) ¹	-	~15-20	~15-20	~15-20			

Medium Low N/A High VALUE PROPOSITION DAC facility site selection/development should look to capitalize on areas with the right combination of favorable geographic conditions. Affordable, renewable energy access and streamlined permitting will enable early and rapid development. Project development expertise and operation can both be exported. EVALUATION Competitive Advantage Societal Impact Market COMPETITIVE ADVANTAGES Large, uninhabited space for DAC facilities (footprints of 1–60 football fields)^{1,2} with optimal environmental conditions Input material availability & (heat/humidity); access to affordable, concentration renewable energy Liquid solvent plants require access abundant freshwater Streamlined, favorable permitting process for Existing regulatory env. carbon storage will speed time to plant supportiveness launch Management and logistical expertise in IP & relevant technical setting up large industrial chemical facilities; L expertise availability knowledge of ideal sites Centralized, standardized RFP process for awarding contracts would increase Market ecosystem maturity opportunities for smaller-scale OEMs/startups to plan and deploy DAC projects

EPC

Energy Inputs

Financing

Operations/

Maintenance

Access to affordable, renewable energy for

plant operations and access to heat energy

for solvent/sorbent regeneration

Transport &

Raw materials

& inputs

OEM

Relevant infrastructure

potential

1. Fasihi et al 2019 2. Beutller et al 2019 3. Many OEMs currently fulfill the project development stage Sources: Expert interviews, BCG analysis

DAC | Financing

DESCRIPTION OF TECHNOLOGY

Financing DAC development, which includes for OEM R&D (to increase capture and energy efficiency) and supporting largescale DAC facility creation

¢40 550	MARKET DYNAMICS						
\$40 - 55B Cumulative APS U.S. SAM (\$B, '20-50)		2020	2030	2040	2050		
	APS U.S. SAM (\$B)	-	0-0.5	0.5-5	10-15		
	Margin (%)²	-	8-12	8-12	8-12		

& inputs // Och // Development / Thanking // Ere // Energy inputs // Maintenance // Storage // Officare // Serv	Raw materials & inputs	Project Development	Financing	EPC	Energy Inputs	Operations/ Maintenance	Transport & Storage	Offtake	11 -	upport ervices
---	---------------------------	------------------------	-----------	-----	---------------	----------------------------	------------------------	---------	------	-------------------

High Medium Low

N/A

VALUE PROPOSITION

De-risking the funding of R&D for DAC facilities would allow for increased facility carbon capture and energy (electric for fans & heat energy for regeneration of sorbents/solvents) efficiency. Countries with more abundant and less risky financing will attract more DAC and relevant infrastructure development.

Competitive Advantage	Societal Impact			
GES				
Government tax credits, grants, and favorable interest loans can support necessary IP development and expansion of renewable energy				
US IIJA provides \$11.6B in committed public funding for DAC through 2026 ¹				
e .		Μ		
public and private entiincreased carbon captue fficiency Long-term: financing w standard utility loans, a	ties supports R&D for ire and energy vill reflect more at which point there	M		
	GES Government tax credit favorable interest loan necessary IP developme renewable energy US IIJA provides \$11.6E funding for DAC throug Financing has preferen operators in its support technology & facilities Short-term: decreased public and private enti increased carbon captu efficiency Long-term: financing w standard utility loans, a will not be an apparent	GES Government tax credits, grants, and favorable interest loans can support necessary IP development and expansion of renewable energy US IIJA provides \$11.6B in committed public funding for DAC through 2026 ¹ Financing has preference for domestic operators in its support of DAC development technology & facilities Short-term: decreased cost of capital from public and private entities supports R&D for increased carbon capture and energy efficiency Long-term: financing will reflect more standard utility loans, at which point there will not be an apparent competitive		

Offtake

Low

Support

Services

N/A

DESCRIPTION OF TECHNOLOGY

Major DAC players have 2 main strategies for EPC: outsourcing to 3rd party project and asset services (e.g., Worley with Carbon Engineering) or in-house EPC to protect IP (Climeworks)

C2E0 2400	MARKET DYNAMICS						
\$250 - 310B Cumulative APS U.S. SAM (\$B, '20-50)		2020	2030	2040	2050		
	APS U.S. SAM (\$B)	-	0.5-5	3-5	55-75		
	Margin (%) ¹	~5-10	~5-10	~5-10	~5-10		

£ climeworks

Worley

Worley subcontracted through 1point5, the project developer for Carbon Engineering for US 1Mt facility (2024)

1. Margins from major EPC in wind & solar 2. Many OEMs currently fulfill the EPC requirements Sources: BCG analysis

Operations/ Project Transport & Energy Inputs Financing Developmen . Maintenance

Medium

VALUE PROPOSITION

OEM

Raw materials

& inputs

OEMs (and partnered project developers, if applicable) will typically own the highest-value engineering and procurement portions of EPC, while the construction will be done by qualified local/regional EPCs with industrial facility construction experience. Preferred partner EPCs may emerge as they develop capabilities for DAC (e.g., Worley). Incentives for EPC players like tax credits could encourage EPC contracts on riskier clean technology projects (like DAC)

High

EVALUATION Competitive Advantage Societal Impact Market COMPETITIVE ADVANTAGES The highly-concentrated OEMs are very involved in eng. & procurement. A fragmented market of EPC players **Providers/suppliers** exists in industrial/chemical asset services for concentration contracting out construction, though there is potential for DAC construction specialization Site eng. design will typically involve OEMs and would require significant technical knowledge for effectively IP & relevant technical repurposing and connecting existing industrial expertise availability components (for liquid DAC) or for novel assembly (for solid DAC) DAC facility creation will require some Trained/skilled labor force certified/specific types of labor (as in refineries), though some required labor is standardized and easier availability to access (e.g., cement) Established bidding processes and market for EPC Market ecosystem maturity outsourcing for industrial and chemical asset creation Government de-risking for EPCs, as opposed to typical construction loans, in such a nascent technology can Financing access incentivize DAC facility creation in different geopolitical regions Given labor intensity, local variations in labor costs can provide some degree of competitive advantage. Pricing advantage potential Experienced EPCs may reduce costs by avoiding delays/budget overages

DAC | Energy Inputs

DESCRIPTION OF TECHNOLOGY

High energy requirements for DAC includes both electricity (e.g., pumps, air contactor fan motion) and heat (higher heat and greater cost for liquid solvent vs. solid sorbent regeneration)

CA A A AT	MARKET DYNAMI	CS			
\$1.1 - 1.4 Cumulative APS		2020	2030	2040	2050
U.S. SAM (\$T, '20-50)	APS U.S. SAM (\$B)	-	0.5-5	10-15	330-410
	Margin (%)		Not ap	oplicable	

Raw materials OEM Project & inputs Final	ing EPC	Energy Inputs	Operations/ Maintenance	Transport & Storage	Offtake	Support Services
			manice	Jeonage	(<u> </u>	

High Medium Low N/A

VALUE PROPOSITION

Affordable, renewable, co-located energy inputs are essential for DAC scaling, efficacy, and overall profitability, as they would reduce operating costs and increase net carbon capture (no additional CO2 emissions from energy use). Transmission costs for high energy inputs can be minimized by co-location of an RE source with a DAC facility

EVALUATION				
Market	Competitive Advantage	Societal Impact		
COMPETITIVE ADVANTAGI	ES			
Providers/suppliers concentration	RE providers are relatively f prevalence in different geog regions. However, opportun develop competitive advant support DAC's electricity and	graphic and geopolitical ity exists for providers to age by specializing to d heat energy needs	Μ	
Trained/skilled labor force availability	RE facility development and linkage to DAC facilities will require some certified/specific types of labor (e.g., project developers, electricians), though some required labor is standardized and easier to access (e.g., solar panel maintenance)			
Market ecosystem maturity	Established bidding processes and market for RE providers to develop energy facility collocated with DAC plant			
Pricing advantage potential	Variations in energy costs could provide some degree of competitive advantage for different RE players. Experienced RE developers may also reduce costs by avoiding delays/budget overages during facility creation			
Relevant infrastructure potential	Increased supply and geographic spread of availability of renewable energy to ensure consistent energy access. Co-location of DAC facilities with energy sources reduces transmission costs (e.g., with Climeworks Orca facility)			

DAC | Operations & Maintenance

DESCRIPTION OF TECHNOLOGY

Chemical needs for ongoing operations (alkali/alkaline earth metal hydroxides for liquid) **Equipment maintenance and replacement** for continued operation of DAC facility (e.g., air contactor fans, calciner)

¢40 EED	MARKET DYNAMICS					
\$40 - 55B Cumulative APS		2020	2030	2040	2050	
U.S. SAM (\$B, '20-50)	APS U.S. SAM (\$B)	-	0-0.5	0.5-5	10-15	
	Margin (%)	-	~5-10	~5-10	~5-10	

COMPANIES

GLOBAL PLAYERS - COUNTRIES

Insufficient data due to nascency of technology

Not exhaustive (or representative of monopoly) - limited data available for O&M providers for DAC due to nascency of development

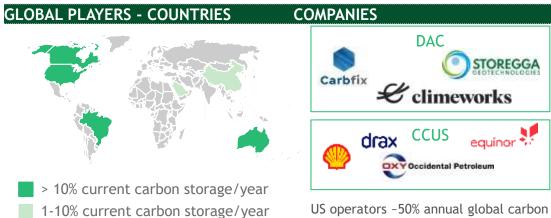
Raw materials OEM Project Financing EPC Energy	Inputs Operations/ Maintenance Storage Offtake Support Services
--	--

High Medium Low

N/A

VALUE PROPOSITION

Certain fit-for-purpose items for replacement have limited suppliers, though there is generally high fragmentation of O&M and raw material providers for industrial facilities (though not DAC-specific)


EVALUATION Market	Competitive Advantage	Societal Impact	
COMPETITIVE ADVANTAG	ES		Ī
Providers/supplier concentration	O&M providers that p cleaning and parts re industrial facilities and fragmented	placement for	L
Trained/skilled labor force availability		of DAC facility require g., main components re from chemical	N
Market ecosystem maturit	Established market fo y providers with indust be used for DAC	-	L
Relevant infrastructure potential	availability of renewa consistent energy acc	nergy sources reduces	Μ

DAC | Transportation & Storage

DESCRIPTION OF TECHNOLOGY

Predominantly, local transportation at DAC hubs (pipelines and pumps) and long-term geological carbon storage. Future use may include CO2 transport for industry use in products like synthetic fuels or building materials.

C425 4550	MARKET DYNAMICS						
\$125 - 155B		2020	2030	2040	2050		
Cumulative APS U.S. SAM (\$B, '20-50)	APS U.S. SAM (\$B)	-	0-0.1	1-5	35-45		
	Margin (%)	10-20%	10-20%	10-20%	10-20%		

US operators ~50% annual global carbon storage (CC&S, currently)

Raw materials & inputs	Project Development	ancing EPC	Energy Inputs Operations	/ Transport & e Storage	Offtake Support Services
---------------------------	------------------------	------------	--------------------------	----------------------------	--------------------------

High Medium Low N/A

VALUE PROPOSITION

Safe, long-term carbon storage will provide most revenue generation for DAC (via offsets), so geological potential and regulatory support for storage creates a distinct advantage.

Market	Competitive Advantage	Societal Impact		
COMPETITIVE ADVANTAGES	5			
Input material availability & concentration	Availability of geologica aquifers, depleted oil re captured CO2		ŀ	
Trained/skilled labor force availability	Labor needed to service DAC hub transportation infrastructure and effectively send compressed CO2 to long-term storage			
Existing regulatory env. supportiveness	Favorable and streamlined permitting process for CO2 injection, established monitoring criteria Publicly-underwritten, long-term carbon storage to encourage offtake by decreasing risk for voluntary offset purchases (guaranteeing maintenance and auditing of storage)			
Market ecosystem maturity	Sequestration is largely though there are international the second	regionally-focused,	I	
Relevant infrastructure potential	Pipeline infrastructure f captured carbon	for transport of	l	

Support Services

Operations/

. Maintenance Transport &

Storage

DAC | Offtake

DESCRIPTION OF TECHNOLOGY

End use of captured CO2 as a carbon offset (stored) and, to a much lesser extent, other end uses (e.g., EOR and synthetic fuels, which would require conversion)

Č1 E 1 0	MARKET DYNAMI	CS			
\$1.5-1.8		2020	2030	2040	2050
Cumulative APS U.S. SAM	APS U.S. SAM (\$B)	-	0-5	15-20	410-510
(\$T, '20-50)	Margin (%)		Not aj	oplicable	

Established (inter)national certification market Private or local certification market

Raw materials

& inputs

Project Development

OEM

	High	Medium	Low	N/A	
VALUE PROPOSITION					
Established carbon marke offsets by emitters will su Further development of C lesser revenue stream.	pport revenue generation	from D	AC via off	fsets.	
EVALUATION					
Market	Competitive Advantage	Societa	al Impact		
COMPETITIVE ADVANTAG			-		
Existing regulatory env. supportiveness	Government incentives/requirements for carbon offsets by emitters & explicit acceptance (and/or preference) for DAC offsets as "high quality", permanent, quantifiable offsets Potentially de-risking long-term offset guarantees of companies to ensure quality of carbon offset even if smaller companies go out of business (e.g., 1000-year storage minimum set in RFP by Stripe ¹ ; government				
IP & relevant technical expertise availability	could assume liability Mature processes for u enhanced oil recovery building/construction	itilizing , synthe	CO2 (e.g. tic fuels,		
Market ecosystem maturity	Established marketpla offset purchases	ces for v	verified ca	arbon A	
Pricing advantage potential	Lower priced DAC offs match the broader ma competitive and offer	rket wil	l be	ŀ	

EPC

Financing

Energy Inputs

DAC | Support Services

DESCRIPTION OF TECHNOLOGY

Carbon offsets: Verification of DAC produced carbon offsets via certification for tons CO2 captured; nationalized (or broadly adopted private) standards for DAC offset quality; digital services to support carbon marketplace

Auditing: ongoing auditing for fugitive emissions from facility or CO2 leakages from storage

	MARKET DYNAMI	CS			
N/A Cumulative APS		2021	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)		Not applicable		
(\$B, '20-50)	Margin (%)		NOT AP		

GLOBAL PLAYERS - COUNTRIES

COMPANIES/COUNTRIES

Not applicable Due to the nascency of commercial-scale DAC, there are insufficient data to use for projecting support service offerings

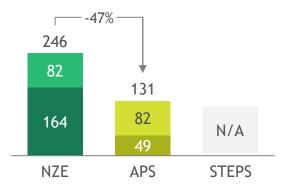
1. Verra Registry 2. Office Journal of the EU 2. company website, expert interviews Sources: BCG analysis

Raw materials & inputs	OEM	Project Development	Financing	EPC	Energy Inputs	Operations/ Maintenance	Transport & Storage	Offtake	Support Services

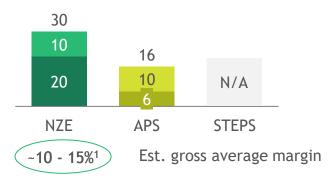
High Medium Low

N/A

VALUE PROPOSITION

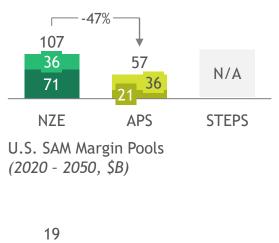

Regulations for emissions and leakage auditing for DAC will require specialized auditors and presents an opportunity for development of lower cost, remote and digital techniques for emissions monitoring. Further, large, private carbon offset verifiers have high prices for verification, which leaves gaps for smaller companies.

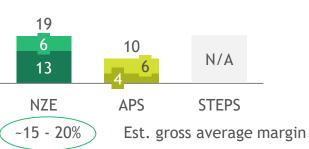
EVALUATION						
Market	Competitive Advantage	Societal Impact				
COMPETITIVE ADVANTAG	ES					
Existing regulatory env. supportiveness	ensure DAC offset quality, sys universal baselines for DAC ca project developers to meet (6	Nationalized standards for verification and auditing would ensure DAC offset quality, systematize sales, and establish universal baselines for DAC carbon storage for all OEMs/ project developers to meet (e.g., EU Carbon Capture & Storage Directive 2009 requires monitoring for injected CO2 migration and leakage)1				
Providers/supplier concentration	(e.g., Verra's Verified Carbon units issued since 2007) ² , tho voluntary DAC offsets set the standards (e.g., Stripe requir Currently no centralized stan opportunity for DAC-specific, Private entities face high cos serve clients with lower budg Fragmented, abundant marke leakages and fugitive emissio	Fragmented, but a few larger, globally-adopted verifiers (e.g., Verra's Verified Carbon Standard, 870 million carbon units issued since 2007) ² , though many companies buying voluntary DAC offsets set their own, very stringent standards (e.g., Stripe requiring 1,000-year permanence) ³ Currently no centralized standard, presenting an opportunity for DAC-specific, high-quality verifiers). Private entities face high costs for verification so cannot serve clients with lower budgets Fragmented, abundant market for auditing for CO2 leakages and fugitive emissions from industrial facilities Fragmented, abundant market of IT technicians who could				
IP & relevant technical expertise availability	Potential exists to develop lo for emissions monitoring (e.g software) leveraging compute a high margin exportable serv	., satellite remote sensing, er scientists, which could be	Μ			
Trained/skilled labor force availability	 Trained auditors for fugitive of Current specialized audit pro facilities (e.g., oil & gas) can Law professionals able to adv carbon storage (e.g., navigat 	viders for similar industrial be leveraged rise on securing permits for	Μ			


DAC | OEM offers strongest U.S. market opportunity across scenarios, though export potential falls ~40-50% from the NZE scenario

OEM

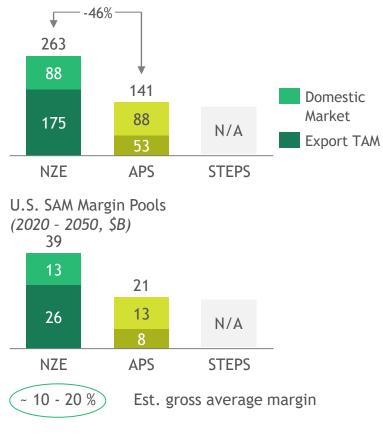
U.S. Serviceable Addressable Market (SAM) (2020 - 2050, \$B)


U.S. SAM Margin Pools (2020 - 2050, \$B)

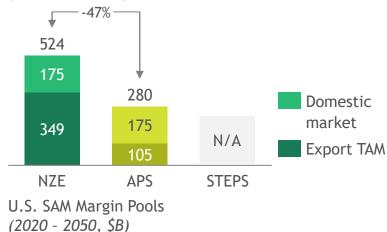


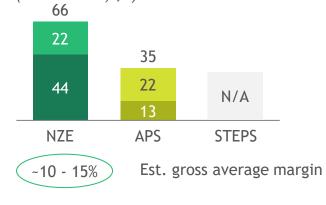
1. Margins based on OEM margins for low-carbon hydrogen Source: BCG analysis

Project Development

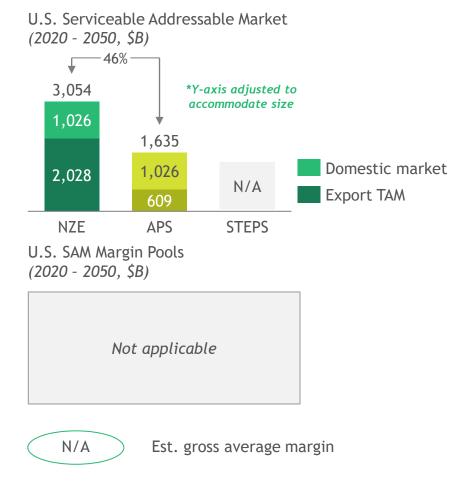

U.S. Serviceable Addressable Market (2020 - 2050, \$B)

Transportation & Storage

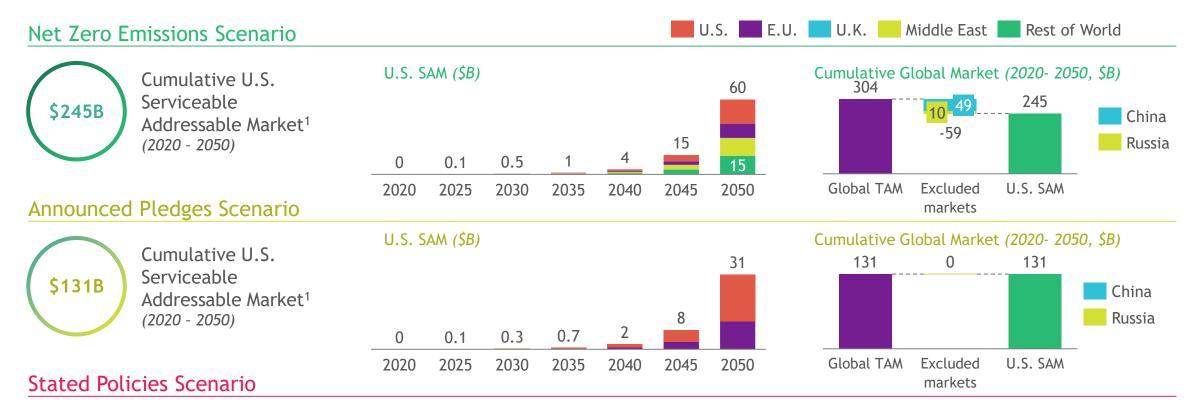

U.S. Serviceable Addressable Market (2020 - 2050, \$B)



DAC | EPC offers strong U.S. market opportunity in the NZE scenario, with a \sim 50% drop in export potential to the APS scenario

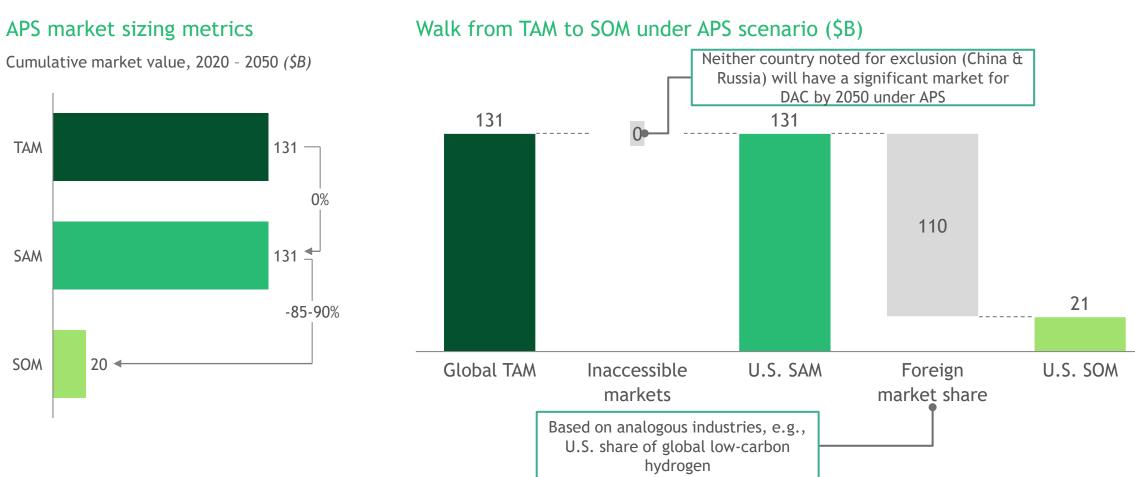

EPC

U.S. Serviceable Addressable Market (2020 - 2050, \$B)


Offtake

150

OEM NZE scenario has ~2x expected market size of APS in 2050


By 2050, U.S. accounts for 27% of SAM, while E.U. and Middle East account for ~16% and ~20%

N/A - negligible uptake of DAC under STEPS scenario

Copyright © 2018 by Boston Consulting Group. All rights reserved.

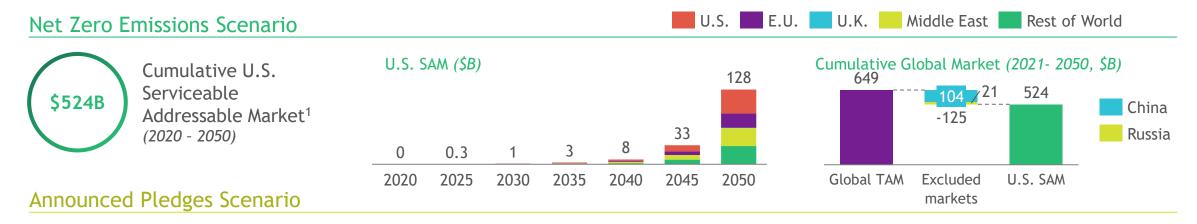
OEM | U.S. share of Direct Air Capture manufacturing of ~15 - 25% implies a moderate U.S. SOM of ~\$15 - 20B through 2050 for DAC OEM



1. Includes both U.S. domestic market and total export TAM

153

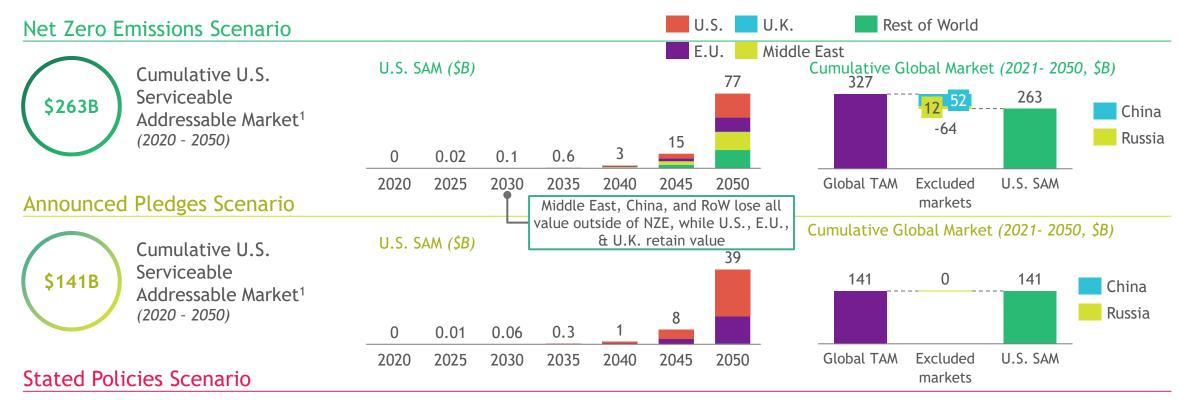
Project Development | Market value is expected to peak 2045-2050


U.S., E.U., and U.K. retain value outside NZE, while other markets become negligible

N/A - negligible uptake of DAC under STEPS scenario

EPC | Market value is expected to peak 2045 - 2050 across scenarios

In NZE scenario only- EPC for Middle East is likely relevant for U.S. export

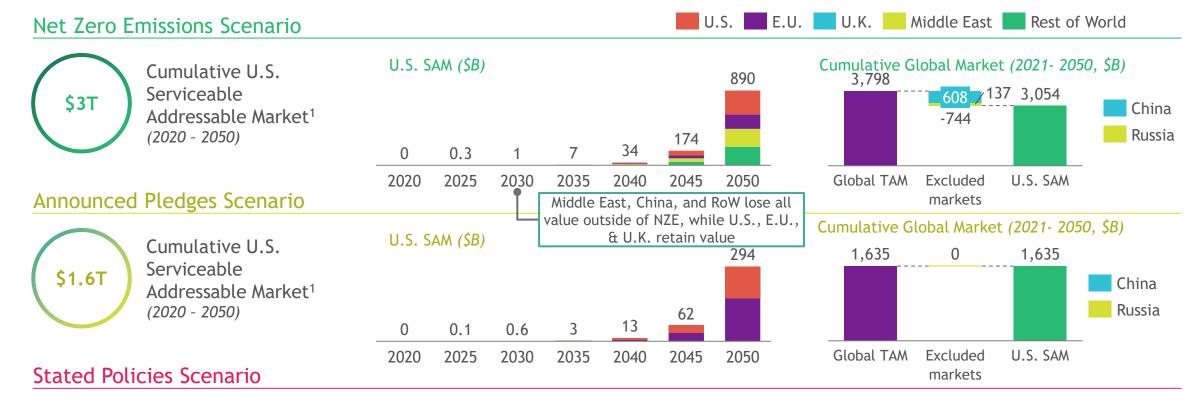

N/A - negligible market for exporting EPC capabilities (negligible Middle East region market)

Stated Policies Scenario

N/A - negligible uptake of DAC under STEPS scenario

Transport & Storage | Market value is expected to peak 2045 - 2050

U.S. & E.U. retain value outside NZE, with small, consistent U.K. market (<0.2% domestic US market)



N/A - negligible uptake of DAC under STEPS scenario

155

Offtake | Market value is expected to peak 2045 - 2050 across scenarios

U.S. & E.U. retain value outside NZE, with small, consistent U.K. market (<0.2% domestic US market)

N/A - negligible uptake of DAC under STEPS scenario

OEM | U.S. has strong innovation, dedicated public funding and workforce, but Europe leads investments, policies & DAC deployment

Areas for Competitive Advantage	Ranking	Summary analysis	😭 🛛 = Key dimension
Raw material availability	High	• U.S. is a leader in chemical production for liquid DAC, though production is not currently at sc sorbent DAC uses a variety of chemicals, most of which are not currently produced at scale new	č
Intellectual Property & innovation	High	 U.S. 1st globally in patent volume in DAC innovation (predominantly for carbon capture medium Historic OEM Climeworks leads patenting activity (~2x next leader), but 5 of top 12 patent-pro The design and manufacturing of carbon capture mediums and energy efficient DAC facilities i curve for DAC. Novel designs and chemical mediums can have major impacts on the efficacy are energy use, medium durability), making IP the most impactful area in these segments 	ducing companies are U.Sbased s complex, creating a steep learning
Research & technical leadership	High	 U.S. has the highest literature publication rate for DAC chemical media (~25% greater than Chi research institutes in DAC research are in the U.S. 	na) and 40% of global leading
Cost advantage potential	Low	 Lowest cost and highest efficacy carbon capture medium are likely to be adopted by global DA curve and expand DAC uptake to meet net zero goals Labor is a small fraction of OEM costs (estimated ~15%), so there would be no significant advar countries in OEM 	
Demand / supply side policy	Low	 U.S. has no demand side policies in place, though 2 are proposed: Federal Carbon Dioxide Rem Scope 3 emissions reporting. Comparable economies, U.K. and E.U. already have public DAC pr 	•
Market maturity ¹	High	 Private investments are predominantly made in OEMs. U.S. has 2nd highest private investments Switzerland, the leading country U.S. leads public funding directly for DAC (\$11.7B), though E.U. leads public funding that for could be used to fund DAC R&D (~\$130B) 	-
Ecosystems / infrastructure	N/A	• Not applicable in this segment - OEMs require laboratories and pilot testing sites for R&D, but	this would be individually-created
Overall ranking		U.S. has a potential to build a durable competitive advantage , due to growing activity of US-base market maturity relative to others; however, a gap in regulatory support and a slight lag in investm potential through next-generation OEMs	

1. Due to the importance of public funding for DAC as a nascent industry, public funding is incorporated in market maturity for DAC. This section highlights where public funding is being used similarly to private investments to support DAC development & scaling

157

Project Development | U.S. has publicly-funded infrastructure, critical resources, and experience, though lacks policy support

Areas for Competitive Advantage	Ranking	Summary analysis 😒 = Key dimension
Raw material availability	N/A	Not applicable in segment
Intellectual Property & innovation	High	• Effective systems integration is critical, especially for liquid DAC, which repurposes existing equipment for DAC. U.S. will have the first large liquid DAC facility (1 MtCO2 planned by 2024 in Permian Basin), so will gain early learning & expertise to streamline development and lower costs
Research & technical leadership	High	• Experienced project developers for industrial chemical facilities (e.g., EOR, oil & gas, CCUS) can streamline and accelerate design and deployment of commercial-scale DAC facilities, including securing permits for storage
Cost advantage potential	High	 U.S. has strong potential to develop co-located, affordable RE (e.g., solar, wind) or low carbon energy to support DAC facilities Of the major producers of DAC (U.S., Switzerland, E.U., and U.K.), the U.S. has the highest labor costs, which is ~70% of PD costs
Demand / supply side policy	Low	 U.S. has no demand side policies in place, though 2 are proposed: Federal Carbon Dioxide Removal Leadership Act of 2022 & SEC Scope 3 emissions reporting. Comparable economies, U.K. and E.U. already have public DAC procurement agreements California has implemented the Low Carbon Fuel Standard, which encourages purchase of carbon credits (DAC included)
Market maturity ¹	High	 U.S. is the only country funding DAC hubs and directly funding R&D and design work for DAC development and scaling (~\$90M) Private investments for OEMs support early-stage, small-scale (order of ktCO2) DAC development, though commercial DAC will likely be funded by traditional project development sources (e.g., bank loans). U.S. has 2nd highest private investments, but at only ~25% the level in Switzerland, the leading country
Ecosystems / infrastructure	High	 Abundant geological storage in the U.S. supports largescale DAC deployment, but stringent environmental & permitting (e.g., Class VI) limits the pace at which DAC facilities can be developed and scaled, especially by small OEMs DAC co-location with existing industrial facilities (e.g., oil & gas, waste recovery plants) could reduce energy demands by using waste heat and reduce expenses and logistics for novel pipelines, plumbing, roads, etc.
Overall ranking		U.S. has a strong existing competitive advantage and should maintain it. Advantage is due to access to critical resources, a mature market relative to others, and a strong synergistic workforce; however, Europe currently leads overall investment, and a lack of public procurement could risk an early lead in this segment

1. Due to the importance of public funding for DAC as a nascent industry, public funding is incorporated in market maturity for DAC. This section highlights where public funding is being used similarly to private investments to support DAC development & scaling

158

= Kev dimension

☆

EPC | US has strong workforce and engineering capability, but EPC will likely only be exported to the Middle East region

Areas for Competitive Advantage	Ranking	Summary analysis
Raw material availability	N/A	Not applicable in segment
Intellectual Property & innovation	N/A	• Not applicable in segment for construction, though some engineering/procurement may be handled by OEMs/PDs
Research & technical leadership	High	• The U.S. has many EPC companies/professionals with relevant experience, though international EPCs compete in U.S. domestic market (e.g., Australian-based EPC (Worley) is contracted to develop 1Mt DAC plant in U.S. Permian Basin)
Cost advantage potential	High	 More experienced EPCs are more likely to secure contracts due to their cost and time savings in construction. While South Korea leads global EPC revenue, the U.S. has major global EPC players (e.g., Bechtel, Fluor, KBR) U.S. higher labor costs (~70% of EPC costs) could limit domestic use and export of EPC capabilities
Demand / supply side policy	Low	• Use of domestic EPCs can be incentivized (e.g., tax credits) for OEMs and developers and required for publicly- funded DAC projects
Market maturity	N/A	EPC contracts are directly with OEMs/PDs and additional financing is largely not applied
Ecosystems / infrastructure	High	• Large U.Sbased EPC players have established agreements/systems for suppliers and expertise in ancillary EPC needs (e.g., securing permits), increasing overall competitive advantage for EPCs
Overall ranking		U.S. has a potential to build a durable competitive advantage , due to skilled, experienced EPC operators and planned early U.S. adoption of DAC, which will increase EPC learning and cost advantages. However, policies can incentivize domestic EPC contracts to secure domestic DAC leadership that could translate to global leadership with export of the most experienced, cost-effective EPC

159

Copyright \odot 2018 by Boston Consulting Group. All rights reserved.

Transportation & Storage | U.S. has abundant resources and existing expertise that can support largescale DAC deployment

Areas for Competitive Advantage	Ranking	Summary analysis $rain = Key dimension$				
Raw material availability	High	• U.S. has immense potential for geological storage (~ 810 Gt) in both saline aquifers & depleted oil wells				
Intellectual Property & innovation	High	 U.S. major oil & gas players have necessary expertise and equipment capabilities for pipeline construction/operation and subsurface injection for geological storage of gas/fluids, which will speed DAC scaling Transportation & storage has largely standardized processes, though some techniques or equipment used by major oil & gas players for more efficient compression and gas transport may be proprietary 				
Research & technical leadership	High	 U.S. has large numbers of engineers/technicians with oil & gas (e.g., experience in injection, pipelines) or other technical training (e.g., fugitive emissions monitoring and assessment) that can transfer skills to DAC R&D and implementation of novel DAC technology requires specialized expertise that is less available globally. As the leading country for DAC research, the U.S. has a significant opportunity to develop DAC technical experts 				
Cost advantage potential	High	• U.S. has low and predictable costs for CO2 storage due to abundant storage space and technical expertise and experience from synergistic industries. Despite higher labor costs, the U.S. is still currently competitive on price				
Demand / supply side policy	 High U.S. 45Q policy provides tax credits per ton CO2 captured and stored permanently (\$50/tCO2) which encourages DAG creation, though increased credit value would support storage for higher cost DAC vs. other carbon credits E.U. has a comprehensive systems for increasing demand, including carbon taxes, emissions restrictions and credit t Emissions Trading Scheme (ETS) 					
Market maturity ¹	High	• U.S. leads public direct DAC funding (\$11.7B), including specific funding for the creation of 4 DAC hubs that will include pipelines, compressors, and injection for storage				
Ecosystems / infrastructure	High	 Planned DAC hubs will provide critical publicly-funded infrastructure and synergistic expertise and equipment (e.g., oil & gas technology for CO2 subsurface injection) can be translated for use in DAC Hub infrastructure funded in IIJA can also support DAC capture & storage, reducing costs and accelerating scaled deployment 				
Overall ranking		U.S. has a strong existing competitive advantage and should maintain it. Advantage is due to storage potential, relevant skilled labor & technology, and a highly mature market relative to others, though more supportive policies could maintain this lead as DAC policies rapidly evolve in other countries				

1. Due to the importance of public funding for DAC as a nascent industry, public funding is incorporated in market maturity for DAC. This section highlights where public funding is being used similarly to private investments to support DAC development & scaling

160

Offtake | U.S. is not currently leading, but can increase advantage through market maturity, policy, and quality standards

	Areas for Competitive Advantage	Ranking	Summary analysis 😒 = Key dimension
	Raw material availability	N/A	Not applicable in this segment
	Intellectual Property & innovation	Low	 U.S. has leading startups with remote sensing and AI-based monitoring, reporting and verification Commercial ability to use concentrated CO2 in industrial products (e.g., low carbon materials, synfuels) is currently in development in other countries (e.g., Europe, Chile, Canada). As DAC becomes economical, commercial use is expected to grow
	Research & technical leadership	High	 DAC credits/offsets must be validated and quality-assured to create buyer confidence (e.g., water, energy, and land use, impact on surrounding communities). Strong availability of skilled labor in the U.S. from synergistic industries (e.g., oil & gas, emissions compliance) will enable validation for DAC credits, following standards establishment Sales expertise, while necessary for offtake of credits of CO2, is not a distinct competitive advantage for the U.S.
	Cost advantage potential	Low	 Producers of the lowest cost, verified DAC offsets will have competitive advantage in the global market. Prices are currently high for all OEMs, but aggressive scaling plans in the U.S. will likely decrease costs fastest (>1 MtCO2 by 2024) Currently, only the E.U. has operational DAC, with prices largely determined by high capital & operating costs
~	Demand / supply side policy	Low	 No current policies establish DAC offtake quality standards and encourage DAC offtake over other carbon credits as a high-quality quantifiable negative emission (e.g., subsidies or higher credit value). The E.U. announced plans to set standards in 2021 Government procurement agreements are needed to de-risk current DAC offtake and encourage DAC expansion to reduce costs for the future. The E.U. and U.K. have public agreements, while the U.S. has a proposed bill (Federal Carbon Dioxide Removal Leadership Act of 2022) The current U.S. SEC proposal for companies to report and minimize their scope 3 emissions would likely increase DAC credit demand
	Market maturity	N/A	Not applicable in this segment
	Ecosystems / infrastructure	Low	 Bilateral trade agreements between countries are necessary for sale of DAC credits created in one country to another E.U. leads the carbon market with an established ETS, valued at ~\$100/tCO2 in 2019, which could be used for DAC California's Low Carbon Fuel Standard allows purchase/trading of credits, but no other public state or federal carbon market exists in U.S. In U.S., private companies have guaranteed \$925M carbon removal procurement via the advanced market commitment Frontier Various industries are projected to use concentrated CO2 (e.g., low carbon materials, synfuels), but infrastructure & market development will be needed to effectively and economically use DAC
	Overall ranking		U.S. has a potential to build a durable competitive advantage , despite not having it today. Despite available expertise and private procurement agreements, immature domestic and international markets and lacking policies to encourage DAC offtake could limit long-term leadership in this segment

Direct Air Capture | Overview of key assumptions

Assumption	Value	Impact on Calculations	Source
NZE Global DAC Abatement by 2050	~7 Gt	Based on DAC costs projected by OEMs and overall negative emissions needs to meet climate targets, this abatement potential by 2050 assumes aggressive DAC expansion. This sets the capacity in NZE scenario and, by extension, the market size and job numbers	Goldman Sachs Carbonomics
APS Global DAC Abatement by 2050	~3 Gt	This sets capacity under APS and, by extension, market size and job numbers. Only countries with net zero by 2050 commitments and current DAC investments are projected to reach their DAC abatement for NZE. which is what this value represents.	Expert Input
Location of % Global DAC abatement under NZE by 2050	27% N. America, 20% Middle East, 16% E.U., 16% China, 21% RoW	These percentages determine the amount of DAC capacity achieved by each country/region if net zero by 205- is reached, which is the end point DAC capacity over time is projected from. This determines capacity, which in turn drives market values and job estimates	Shayegh et al. 2021
US % of North America DAC in 2050	~99%	The vast majority of DAC (not CCUS) in North America is expected to be built in the U.S., based on projects pledged and in progress. This percentage determines U.S. DAC capacity and, by extension, market sizing and job numbers	U.S. IIJA, Carbon Engineering
Exponential growth of DAC capacity	Exponential	As an exponential vs. linear growth for DAC, more of the capacity, CapEx, jobs, etc. are concentrated later in the time window. This is consistent with predictions of DAC capacity growth, cost efficiencies, and the delay in largescale DAC uptake until further into decarbonization efforts. This determines the rate of growth of DAC and cumulative capacity, market size, and job numbers	Expert Input
CapEx for 1Mt DAC facility	Solid: \$1.6B ('25) →\$0.4B (at 10Gt) Liquid: \$0.9B ('25) → \$0.15B (at 10Gt)	This sets the amount of CapEx and the DAC facility construction learning rate from increased deployed DAC capacity. This influences market size over time (as global DAC capacity increases) for OEM, Project Development, Financing, EPC, and O&M	Fasihi et al 2019 & Broehm 2015 ECTF report

Clean Steel

Clean steel | Definition of each segment across value chain

	Focus area		Focus area						
Raw materials	OEM	Financing	EPC	Energy inputs	Operations & Mainter	nance	Transport	Offtake	Support Services
 Mining of iron ore: Exploration Permitting Construction Excavation via drilling/ blasting and ore extraction Stockpiling and transport of ore to refinery 	for gaseous/ hydrogen- based reduction - Electric arc furnaces (EAF) - Advanced basic-oxygen	Financing of steelmaking facility development & construction Private investments & loans, public markets Government incentives, grants, and loans	Energy efficiency improvements (e.g., heat regeneration, waste heat or gas recovery) EPC- new facilities 1. Ground-up construction of new plants leveraging DRI- EAF or CCUS	 Fuel, including: Low-carbon hydrogen¹ Natural gas Renewable electricity 	 Ironmaking: Processing & reduction of ore via blast furnace or direct reduction furnace Introduction of flux & reducing agents (e.g., coke, NG, hydrogen) DRI: CO & NG/H₂ BF-BOF: non-cooking coal & iron pellets (COREX) OR coal & iron ore (FINEX) Steelmaking: Production of steel via EAF or BF- 	Forming: Includes stamping, rolling, extrusion, drawing & forging Forming can be (in decreasing order of energy/ equipment intensity): hot, room temperature, or	Transport of unitized & palletized steel to distributors	Sale & distribution of clean steel to consumers	Steel collection & recycling services
Lime & coal Crushing, grinding,	furnace (BF- BOF) systems with high- efficiency		technology & H2 production (including project		BOF & CCUS Efficiency improvements to reduce fuel consumption & waste,	cold Finishing & packing:			
blending/ concentrating, agglomeration	features including carbon		development ²) <u>Retrofitting</u>		including BF-BOF: - Gas recovery	Cleaning & pickling			
via sintering/ pelletizing Use of scrap/	capture & utilization / sequestration (CCUS)		existing facilities 2. Installation of CCUS and/or top gas recovery		EAF: - Eccentric bottom tapping - Scrap preheating - Stirring gas injection	Finishing/ shaping processes to produce final product			
recycled steel Alloying metals	 New, innovative steelmaking 		systems for BF- BOF operations OR		Casting: Ingot casting	Unitization			
(<10% of steel, not focus area) Electrolyzer inputs ¹	methods such as molten oxide electrolysis		3. Furnace replacement with hydrogen-fueled DRI & EAF, using NG as stopgap		Maintenance: Cleaning, repair, & replacement of critical plant parts (e.g., furnaces, turbines, pipes, air blast pump)	Palletization (adhering to international conventions)			

1. Low-carbon hydrogen technologies are covered in a separate "Hydrogen" value chain 2. Project development is included in EPC because steel producers commonly conduct their own designing and/or contracting out to OEMs

DRI = direct reduced iron, EAF = electric arc furnace, BF-BOF = blast furnace/basic oxygen furnace, CCUS= carbon capture utilization & storage

Clean Steel | Significant opportunity exists across within OEM & EPC, with the sales/offtake environment also playing an important role in sector growth

				3			Additional and	lysis in Phase 2
							High Medium	Low N/A
Raw materials	ОЕМ	Financing	EPC	Energy Inputs	Operations & Maintenance	Transport	Offtake	Support Service
APS U.S. Servicea	able Addressable M	arket (cumulative	2020 - 2050, \$B)					
2,100 - 2,700	800 - 1,000	95 - 120	240 - 300	780 - 950	730 - 900	N/A	4,800 -6,000	N/A
Competitive Adva	antage							
Regional access to iron ore & other raw materials can help reduce production costs by eliminating transport requirements	Steelmakers trust OEMs with track records of success in mill construction, and projects require major technical experience, with clear industry leaders today	High CAPEX makes mill funding critical, with most mills self-financing through equity/ cashflow. Gov't investment in clean steel will also be important	Mill construction requires significant industrial engineering experience, and OEMs with proven project success are more likely to win in the market	Energy costs are a major driver of the economic viability of clean steel, and access to affordable hydrogen & renewable electricity will be critical	Continuing cost reduction in O&M will be key to competing in export markets, with energy & operating efficiency & automation playing a growing role	N/A	Market policies creating a friendly sales environment will be essential for the success of clean steel, relying on carbon reporting & taxes to drive demand	Increasing the collection & reprocessing of recycled/scrap steel will be increasingly important to hitting carbon reduction measures
Societal / socio-e	conomic impact (c	umulative job-yea	rs created 2020-20	050 from APS U.S.	SOM)			
600K -730K new domestic job-years	240K - 255K new domestic job-years	25K - 35K new domestic job-years	125K - 135K new domestic job-years	N/A new domestic job-years	550K - 650K new domestic job-years	N/A	N/A	N/A
I				I			└────────────────────────────────────	16

Low

Support

Services

N/A

Clean Steel | Raw Materials

DESCRIPTION OF TECHNOLOGY

GLOBAL PLAYERS - COUNTRIES

Ironmaking & steelmaking inputs: Iron ore pellets (+ sinter for BF) and limestone (commonly used as flux material to increase fluidity and reduce impurities) Furnace: Coal (coke) (BF-BOF w. CCUS) or hydrogen⁴ (H2-fueled DRI-EAF) for ore reduction Electrolyser materials: Platinum, iridium, and nickel⁴

EAF materials: Petroleum coke and coal pitch (for synthetic graphite electrodes)

\$2.1 - 2.7	MARKET DYNAMICS				
Cumulative APS		2020	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)	0	40-50	90-120	160-200
(\$T, '20-50)	Margin ⁵ (%)	6-10%	6-10%	6-10%	6-10%

COMPANIES

► 200 Mt iron ore production ► 200 Mt iron ore production

VALUE PROPOSITION

Raw materials

OEM

As with traditional steelmaking, managing reliable raw material supply can be a key factor in cost-competitive steelmaking. All steel production requires iron ore and flux (e.g., limestone), so countries with high mining/production capabilities will have an advantage. For BF-BOF, coal is still used (CCUS added to facility), so countries with access to affordable coal for steel production will have an advantage

Financing

Energy

Inputs

Medium

EPC

High

Operations &

Maintenance

EVALUATION			
Market	Competitive Advantage	Societal Impact	
COMPETITIVE ADVANTAC	jes		
Input material availability & concentration	All: access to iron ore a is primarily mined in Au China ¹ . Global lime pro China (~70%) ² BF-BOF w/CCUS: acces production. China production	istralia, Brazil, & duction is dominated by s to coal for coke	M
Providers/supplier concentration	Iron ore production is c producers) with operati & China ¹ , but geologica diverse as many countri deposits	ions in Australia, Brazil, l concentration is	M
Cost advantage potential	Local/regional access to reduce final steelmakin transportation requirem	g costs by eliminating	Μ

Low

Support

Services

N/A

Clean Steel | OEM

DESCRIPTION OF TECHNOLOGY

Equipment: DRI-EAF compatible with NG (stopgap) and H2, CCUS added inline to existing BF-BOF, onsite electrolyzing capabilities

Plant design: efficiency improvements to reduce fuel consumption & waste, including heat recovery, waste gas to fuel conversion, BF-BOF-specific top gas recovery, and EAF-specific eccentric bottom tapping and scrap preheating

\$0.8 - 1.0	MARKET DYNAMICS				
Cumulative APS		2020	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)	0	15-20	35-45	60-75
(\$T, '20-50)	Margin (%)	8-10%	8-10%	8-10%	8-10%

VALUE PROPOSITION

Raw

materials

Clean steel OEMs need to have a proven track record of successful projects to generate commercial trust and require significant capabilities in industrial design & engineering. Plant design optimization can lead to cost advantages from reduced energy/fuel requirements (e.g., heat and fuel recovery, waste gas to fuel conversion). Technology used in CCUS, NG \rightarrow H2 DRI-EAF furnaces, and onsite electrolyzing will also be increasingly incorporated into new plants

Financing

Energy

Inputs

Medium

EPC

High

Operations &

Maintenance

Market	Competitive Advantage	Societal Impact		
COMPETITIVE ADVANTAGE	S			
Providers/supplier concentration	Semi-concentrated OEMs a technology, including lead Some steel producers are themselves (e.g., Arcelor replacement and waste ga plants in Bremen & Eisenh	ers Midrex and Tenova. pioneering OEM Aittal planning DRI-EAF s conversion to fuel for	٨	
IP & relevant technical expertise availability	Ongoing innovation create improvements and differen equipment, but time-to-m technology will limit the in	nces in capabilities across arket and a maturing	٨	
Financing access	Government and private financial support needed t meet high CapEx requirements to retrofit existing steel production plants or create new plants with cleaner technology (e.g., HYBRIT project to create DRI-EAF plant is a joint venture of mining and ore producer (LKAB), steelmaker (SSAB), and energy producer (Vattenfall) that is also supported by the government (Swedish Energy Agency) ²)			
Trained/skilled labor force availability	Specialized and experienced teams are required to			

2. Company websites 2. Press release by Vattenfall

Source: BCG Analysis

DRI = direct reduced iron, EAF = electric arc furnace, BF-BOF = blast furnace/basic oxygen furnace, CCUS= carbon capture utilization & storage

Low

Support

Services

N/A

Operations &

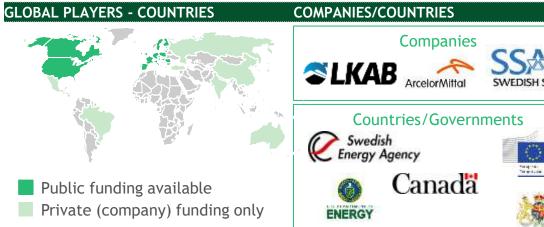
Maintenance

Energy

Inputs

Medium

EPC


High

Clean Steel | Financing

DESCRIPTION OF TECHNOLOGY

Financing of retrofits or new plant construction, both of which have high CapEx requirements and long return timelines for steel producers. Currently, financing is a combination of private (often self-funded through cashflow/equity markets) and public funding, though traditional funding of industrial asset creation (e.g., bonds & bank loans) will increase as sector matures

\$95 - 120	MARKET DYNAMICS				
Cumulative APS		2020	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)	0	1-3	1-5	5-10
(\$B, '20-50)	Margin (%)	8-12%	8-12%	8-12%	8-12%

	Companies	CCAD
SLKAB	ArcelorMittal	SWEDISH STEEL
	ies/Govern	ments
Swedish Energy Age	ency	
	Canada	To Ballon

VALUE PROPOSITION

Raw

materials

OEM

Because of the high CapEx needed for retrofits and new plant construction with delayed/limited returns, government financial support is currently needed to increase capacity for clean steel. Public funding in the form of joint ventures, grants, subsidies, and favorable taxes can encourage more clean steel transition. In the long-run, financing will become more traditional, as clean steel technology is further developed and more widely adopted (achieving scalability)

Market	Competitive Advantage	Societal Impact
OMPETITIVE ADVANTAC	GES	
Existing regulatory env. supportiveness	Government tax credits interest loans can support clean steel technology new steel production fat capital costs & risk (e.g Agency provided 25% fut project by LKAB, SSAB, create an H2-fueled DR	ort the adoption of in both existing and acilities by reducing ., Swedish Energy nding for a joint and Vattenfall to
Financing access	Short-term: decreased public funding supports technology, important f emissions and increasing enable scalability of ref clean steel production swapping out furnaces f downtime, increased wa conversion)	adoption of clean steel for both reducing g efficiencies that will crofitting and novel (e.g., more effective for minimal plant

Low

Support

Services

N/A

High

Energy

Inputs

Medium

Operations &

Maintenance

Clean Steel | EPC

DESCRIPTION OF TECHNOLOGY

3 primary approaches for clean steel production have different EPC needs:

- 1. New plant construction (DRI-EAF or CCUS): traditional EPC full facility creation
- 2. Retrofitting BF-BOF operations: installing and integration of CCUS
- 3. Retrofitting for H2/NG DRI & EAF: replacement of furnace, installation of electrolyzers
- EPC is often conducted by the OEM with local contractors assisting at different phases of construction

\$240-300	MARKET DYNAMICS				
Cumulative APS		2020	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)	0	5-10	10-15	15-25
(\$B, '20-50)	Margin (%)	8-10%	8-10%	8-10%	8-10%

VALUE PROPOSITION

Raw

materials

OEM

OEMs typically own the highest-value engineering and procurement portions of EPC, with contracted qualified local/regional EPCs assisting with construction. A strong track record of on-time, on-budget projects differentiates OEM/EPC players as it requires a strong background managing complex industrial engineering capital projects, with most Western steelmakers trusting only a select few OEMs

Financing

EVALUATION			
Market	Competitive Advantage	Societal Impact	
COMPETITIVE ADVANTAG	FS		
Providers/supplier concentration	Concentrated OEMs will li eng. & procurement. A fra players exists for contract there is potential for retro plant construction special	agmented market of EPC eed construction, though ofitting & new clean steel	M
Trained/skilled labor force availability	Clean steel facility creation require large amounts of s labor, and many OEMs dep house teams for steel mill	specialized/certified bend on having strong in-	Н
IP & relevant technical expertise availability	Site eng. design will typic would require technical kin connecting either CCUS or facilities or novel creation will likely be outsourced t partnership new facility in provides DRI technology, w the plant and integrates t	nowledge for effectively new DRI-EAF to existing of DRI-EAF. Construction to local EPCs (e.g., n Italy where OEM Danieli while Saipem constructs	M
Pricing advantage potentia		al variations in labor costs of competitive advantage. o reduce costs by avoiding	M

Low

Support

Services

N/A

Operations &

Maintenance

Medium

Clean Steel | Energy Inputs

DESCRIPTION OF TECHNOLOGY

Steel production requires large amounts of energy in both the furnaces for iron ore reduction (~2 tons of H2 or ~2.4 tons of NG per ton steel¹) and in EAF for converting ore to low-carbon hot metal (~150-400 kWh/ton of liquid steel²). Energy must be sourced from low-carbon sources (e.g., RE, NG, GGGT+CCUS). Hot and cold steel forming also have high energy intensity (2 and 1 GJ/ton steel, respectively³)

\$780 - 950B	MARKET DYNAMICS				
Cumulative APS		2020	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)	0	15-20	30-40	55-70
(\$B, '20-50)	Margin ⁶ (%)	10-12%	10-12%	10-12%	10-12%

GLOBAL PLAYERS - COUNTRIES	COMPANI
	VAT
 > 20 EJ/year natural gas production 5-20 EJ/year natural gas production 	

VALUE PROPOSITION

Raw

materials

OEM

Access to affordable, low-carbon (H2, natural gas as stopgap, or renewable) energy sources are critical to further reduce emissions from steel production. Switching to DRI, even with NG power still results in lower emissions than traditional BF-BOF. Energy inputs can also be reduced via energy efficiency measures (e.g., heat & top gas recovery - addressed in OEM). Oppt'y exists for providers to develop competitive advantage by specializing in affordable & potentially co-locating low carbon fuels (e.g., onsite electrolysis) for clean steel production

Financing

EPC

High

EVALUATION			
Market	Competitive Advantage	Societal Impact	
COMPETITIVE ADVANTAGE	ES		
Input material availability ar concentration	H2-fueled DRI-EAF: acce hydrogen and/or natural nd purchasing hydrogen (vs. development of hydrogen	gas as a stopgap. For onsite production),	M
Providers/suppliers concentration	demand. Interim natural	, ,	M
	Hydrogen can either be p (electrolyzing at steel pl transported in, as done w hydrogen, the market is 5 players controlling <40	ant) or may be with NG. For purchased fragmented, with the top	
Pricing advantage potential	Variations in energy cost differences) could provid competitive advantage f other low/no-carbon energy	le some degree of or different H2, NG, or	L

1. Based on estimates from IEA, HYBRIT, & US Energy Information Administration 2. Estimate when using pig iron (low) or DRI (high), Air Products 3. Estimates based on figures from the Austrian Energy Agency & Freuhan et al. 2000 4. IEA Hydrogen Project Database 5. NS Energy report 6. Standard net margin for utilities, not a focus area of this study Source: BCG Analysis

Low

Support

Services

N/A

Clean Steel | Steelmaking O&M

DESCRIPTION OF TECHNOLOGY

Ironmaking: processing & reducing iron ore via blast furnace (BF-BOF) or direct reduced iron furnace (DRI) **Steelmaking:** converting reduced iron ore to low carbon (~95% iron & 4% carbon¹) hot metal

Casting & forming: pouring out hot metal and using a variety of techniques (e.g., stamping, rolling, drawing, extrusion) to create steel products

Finishing & packing: Processing, cleaning, and final shaping of steel for sale; unitization & palletization

\$730 - 900B	MARKET DYNAMICS				
Cumulative APS		2020	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)	0	10-20	30-40	50-65
(\$B, '20-50)	Margin (%)	8-12%	8-12%	8-12%	8-12%

VALUE PROPOSITION Continued cost reduction in clean steel O&M will be important as it competes with traditional

OEM

Raw

materials

methods. Deploying remote, low-cost monitoring software systems can reduce maintenance costs, limit plant downtime, and increase the quality of the product. Further, the transition to clean steelmaking techniques will require re-training of operators & maintenance technicians

Financing

Energy

Inputs

Medium

EPC

High

EVALUATION Market Competitive Advantage Societal Impact

Input material availability & concentration	DRI-EAF: Access to affordable NG (interim) and eventually H2 (onsite electrolysis likely) CCUS	M
IP, technical expertise, and R&D availability	Potential for low-cost, remote, software-based tools to effectively monitor and provide early warnings about issues in production, especially for novel components (e.g., DRI-EAF, CCUS linkage to BF-BOF), which can be tailored for major steel producers' operations (thus more durable). TataSteel already uses predictive and remote monitoring techniques ² through a partnership with FarEye ²	M
Providers/supplier concentration	Existing O&M for routine cleaning and parts replacement for steel production facilities is either conducted inhouse by steel producers (e.g., Tata Steel) or outsourced to companies (e.g., to Primetals, SMS Group), with potential to specialize in newer OEM technologies for clean steel	_
Trained/skilled labor force availability	Trained labor needed for maintenance and repair of novel equipment added to existing facilities or newly created facilities with different furnaces (e.g., H ₂ or NG-fueled furnaces, DRI-EAF and CCUS). Other required labor is standardized and easier to access (e.g., parts cleaning)	M
Pricing advantage potential	Low-cost remote monitoring and predictive software systems could replace manpower maintenance	M

Support

Services

N/A

Clean Steel | Offtake

DESCRIPTION OF TECHNOLOGY

As with other steel, clean steel is sold to end consumers for use in construction and other large projects. Distributors tend to manage sales and transport of the final product.

\$4.8 - 6.0T	MARKET DYNAMICS				
Cumulative APS		2020	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)	0	90-115	210-260	350-430
(\$T, '20-50)	Margin (%)	8-12%	8-12%	8-12%	8-12%

GLOBAL PLAYERS - COUNTRIES	COMPANIES	
	N/A	

VALUE PROPOSITION

Raw

materials

OEM

Clean steel can be sold at a 5-10+% price premium, according to a willingness-to-pay survey of customers⁴, (though most steel is a global commodity with low margins & uniform prices) Strong policies/regulation are critical for growing the clean steel market opportunity, including carbon taxes and incentives for low-or-no carbon steel, protections from unfair trade, and requiring scope 3 ESG disclosures to increase demand

Financing

Energy

Inputs

Medium

EPC

High

Operations &

Maintenance

Low

EVALUATION			
Market	Competitive Advantage	Societal Impact	
OMPETITIVE ADVANTAGE	S		
Existing regulatory env. Supportiveness	Trade protections against cheap high-price regions (e.g., EU & U on imported steel, with agreem sustainable steel production ¹) Preferential market (tariff struc decreased fees) for low-or-no ca (e.g., EU Carbon Border Adjustr enacting a tariff on the carbon i Policies requiring ESG disclosure clean steel use (e.g., March 202 Procurement requirements to re end products	S; as in US Section 232 tariffs ents to lift tariffs on eture, direct carbon tax, or arbon metal vs. traditional nent Mechanism essentially in imported steel ²) es (Scope 3) to incentivize 2 proposal by US SEC ³)	Н
Providers/supplier concentration	While steel distribution has man the overall market is dominated		M
Market ecosystem maturity	A robust market is needed to co consumers, with information on incentives and/or import penalt	"true" steel price (including	M
Pricing advantage potential	Distributers able to sell at a low steel production subsidies) will traditional steel, though consun willingness to pay a premium fo	be more competitive vs. hers have indicated a	M
Financing access	Government-funded public cons clean steel can spur steel produ production processes		Μ

N/A

Low

Clean Steel | Support Services

DESCRIPTION OF TECHNOLOGY

Collection and recycling of scrap metal for use in new steel products as input for scrap-EAF steelmaking

N/A	MARKET DYNAMICS				
Cumulative APS		2020	2030	2040	2050
U.S. SAM	APS U.S. SAM (\$B)	N/A	N/A	N/A	N/A
(\$B, '20-50)	Margin (%)	2-4%	2-4%	2-4%	2-4%

VALUE PROPOSITION

Raw

materials

OEM

Effective recycling of scrap metal can reduce costs and need of sourcing initial input materials (e.g., iron ore) and reduce processing (e.g., energy intensive ironmaking)

Financing

Energy

Inputs

Medium

EPC

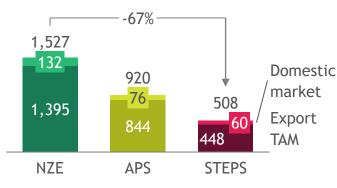
High

Operations &

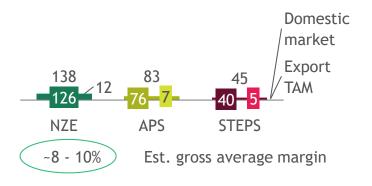
Maintenance

EVALUATION

Market	Competitive Advantage	Societal Impact

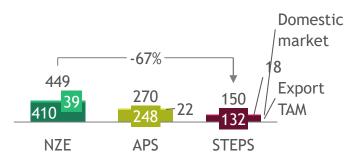

COMPETITIVE ADVANTAGE	S	
Existing regulatory env. supportiveness	Requirements encouraging steel/scrap metal recycling over virgin steel production (e.g., European Commission's Circular Economy Package) ¹	٨
Providers/supplier concentration	High access to recycling providers - many steel plants already double as recycling plants, with about 80-100 million tons of steel scrap recycled in the US annually ² Fragmented network of steel distributors and recyclers creates high competition and drives low margins in scrap market	L

Clean Steel

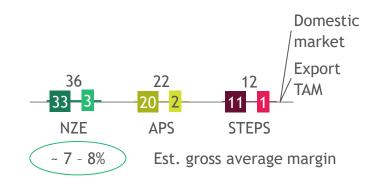

Clean Steel | OEM largest market opportunity with significant value within U.S. market, but demand-side policies will be most impactful across segments

OEM

U.S. Serviceable Addressable Market (SAM) (2020 - 2050, \$B)

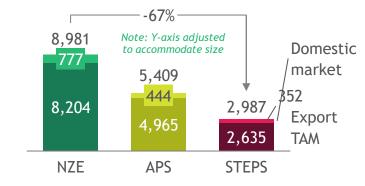


U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)

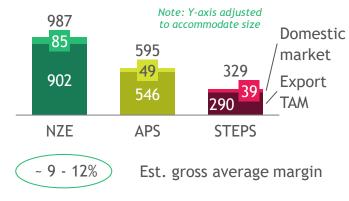


EPC

U.S. Serviceable Addressable Market (2020 - 2050, \$B)

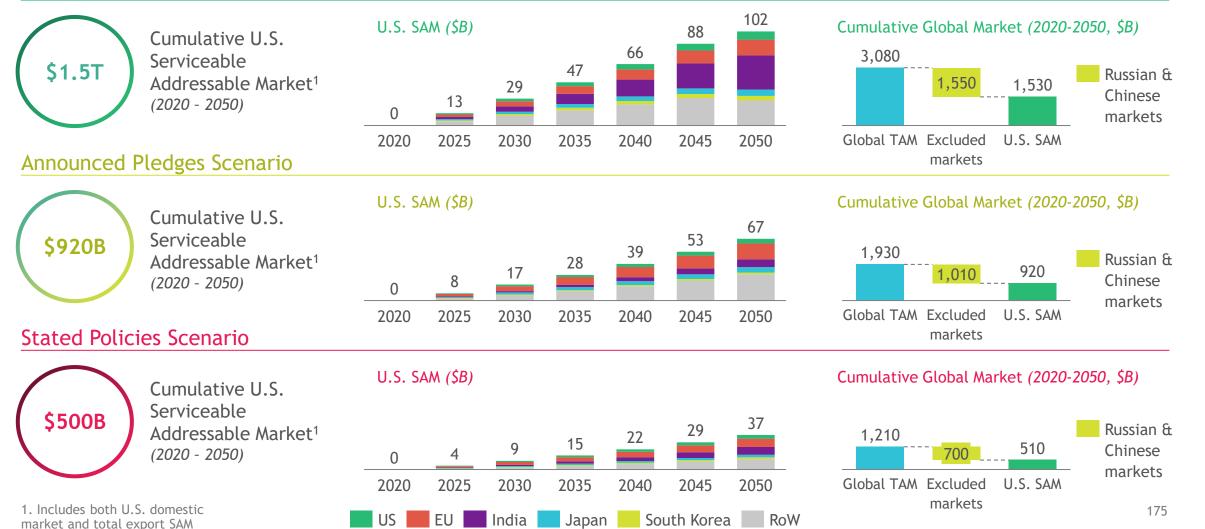


U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)

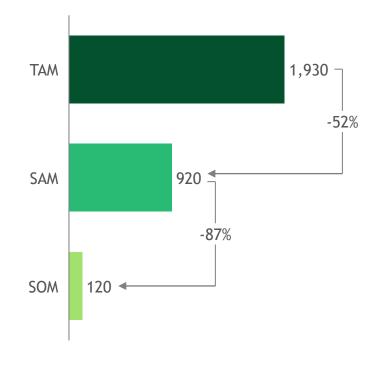


Offtake (sales)

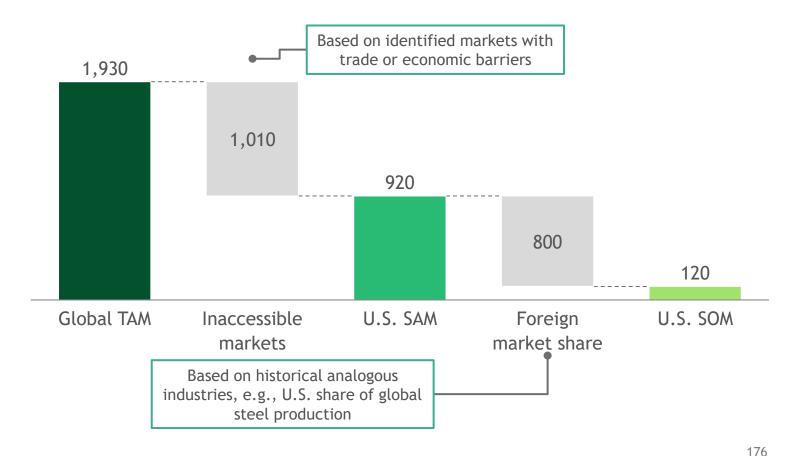
U.S. Serviceable Addressable Market (2020 - 2050, \$B)


U.S. Serviceable Addressable Market Margin Pools (2020 - 2050, \$B)

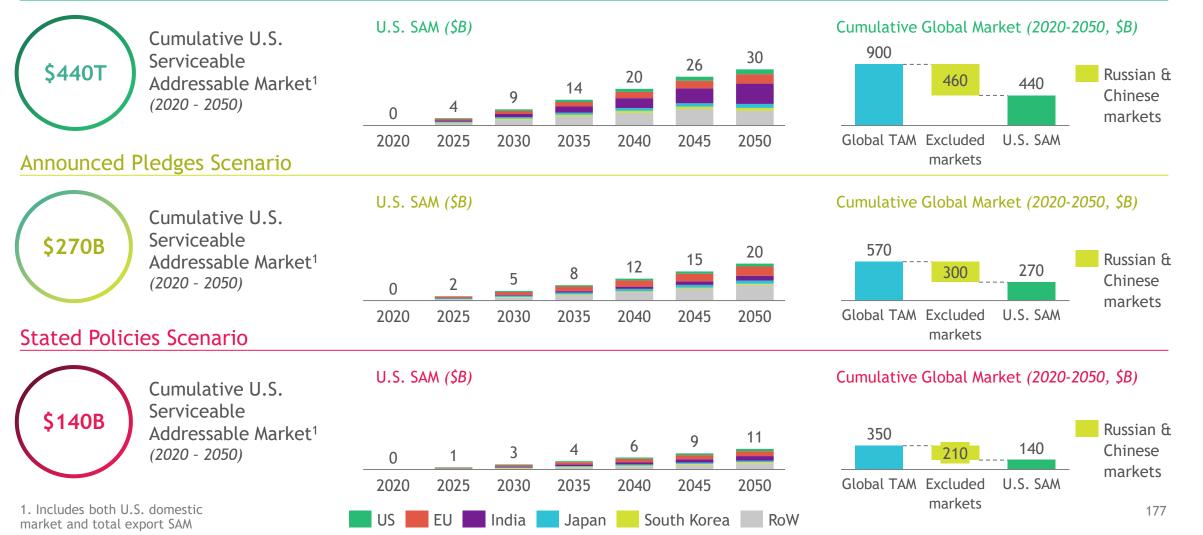
Note: Markets do not include "green premium" in sizing Source: BCG analysis


OEM | 3X delta between SAM in STEPS vs. NZE, with India has major value center in NZE as the world's most rapidly growing steelmaking nation

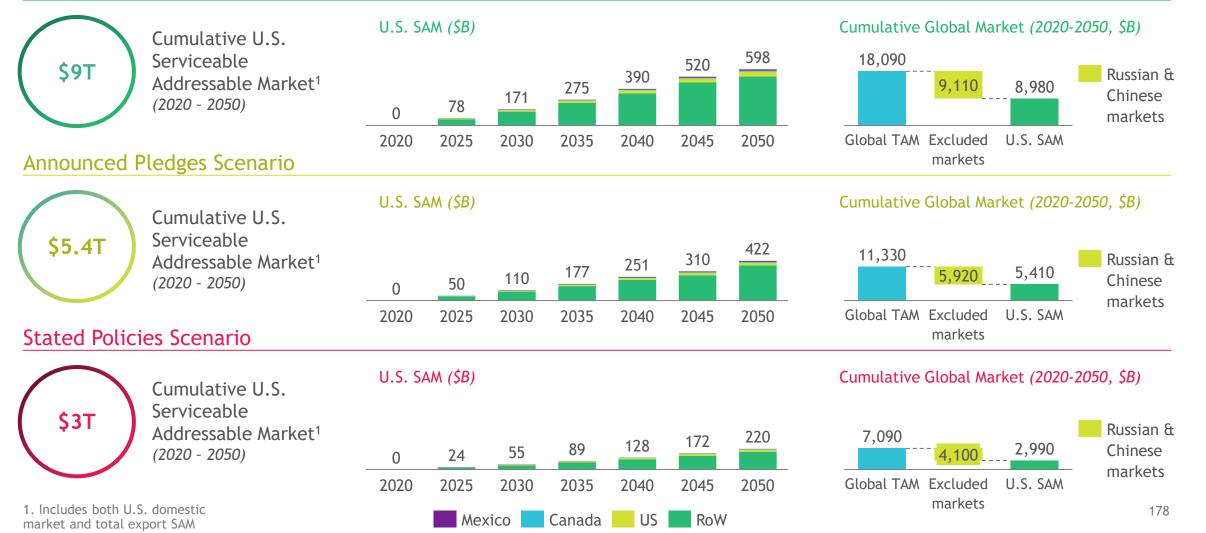
Net Zero Emissions Scenario


OEM | Large 16X delta between TAM and SOM driven by small US share of global steel production today, major international OEMs with large presence

APS market sizing metrics


Cumulative market value, 2020 - 2050 (\$B)

Walk from TAM to SOM under APS scenario


EPC | Much EPC value will be captured by local markets, but opportunity to target developing countries including India with EPC support services

Net Zero Emissions Scenario

Offtake | Large addressable global market, but obtainable Mexico, Canada represent small portion, totaling only ~\$25B in 2050

Net Zero Emissions Scenario

Clean Steel

OEM | U.S. behind in equipment OEM, with China leading in patent & research activity and few mature dedicated manufacturers or suppliers today

Areas for Competitive Advantage Ranking Summary analysis • Not applicable in segment Raw material availability N/A • US is 3rd globally in OEM-relevant clean steel patent volume, behind China and Germany Intellectual Property & Low China a clear 1st across most major segments, including EAF, DRI and CCUS technology-related patents ☆ innovation • US has small lead in emerging molten oxide electrolysis segment, but low total activity China the publication leader across all equipment technologies, including DRI, EAF, CCUS, and molten oxide electrolysis, Research & technical surpassing US in overall impact in most segments Low China the leader in overall CCUS literature volume, but U.S. is a close second and first in sequestration research. Domestic CCUS leadership researchers also have greater impact, with more total citations than those from other nations U.S. labor costs are high compared to many major steelmaking regions such as East & South Asia as well as parts of Europe, but Low operational costs Low labor and energy costs are relatively limited drivers of OEM cost & competitiveness • The U.S. has no dedicated clean steel policies. Minor private-sector initiatives, such as the First Movers Coalition, are helping generate small-scale demand, but domestic policy is behind competing nations Demand / supply side policy Europe is moving to implement a strong carbon border-adjustment mechanism (CBAM) that will incentivize the growth of the Low • regional clean steel market & industry, and likely spur demand for the major OEMs, particularly within Europe Domestically, 45Q is a potential driver of CCUS projects, but no CCUS-steel facilities are active today • U.S. has notable presence in clean-steel related investment activity, particularly around emissions reduction and carbon capture technologies, but few leading players. Domestic OEM is nascent, and most steelmakers do bulk of OEM in-house, acting as sole designer, procurer, and general contractor, with minimal turnkey solutions available for export Notably, however, most East Asian (particularly Chinese) investments are in large part driven by public initiatives, internal Relative domestic market corporate investments, or state-owned corporations, and are not visible in this private investment market assessment Low maturity The high patent activity of Chinese, Japanese, and Korean steelmakers suggest major investment is occurring in those markets U.S. also has strong presence in CCUS space with leading amount of deployed capacity today, but no active steel-CCUS sites Notably, Canadian steelmakers have made a commitment to be net-zero by 2050, opening a potential opportunity to deploy US-• based EAF, DRI, and CCUS experience to Canadian partners, but may be hindered by competition Regulatory environment & • U.S. has strong regulatory and political ecosystem for steelmakers that provides sufficient capital, permitting, and labor support, Low but minimal opportunity for impact in clean steel sector aside from direct demand-side subsidies existing infrastructure The limited number of dedicated U.S. OEMs today, coupled with a gap to the leader in innovation and research across clean steelmaking **Overall ranking** equipment technologies, suggests the US has relatively low competitive advantage in the segment today 179

EPC | EPC largely driven by OEMs, and similarly impacted by small U.S. presence. Some opt'y to leverage comparatively stronger position in CCUS

Areas for Competitive

😭 = Key dimension

	Areas for Competitive Advantage	Ranking	Summary analysis
	Raw material availability	N/A	Not applicable in segment
	Intellectual Property & innovation	N/A	Not applicable in segment
	Research & technical leadership	N/A	Not applicable in segment
	Low operational costs	Low	 U.S. labor costs are high compared to many major steelmaking regions such as East & South Asia, parts of Europe, and areas of the Middle East where CCUS technology has found early traction
	Demand / supply side policy	Low	 The U.S. has no dedicated public clean steel policies. Minor movement around private-sector initiatives, such as the First Movers Coalition, are helping generate small-scale demand, but domestic policy is behind competing nations in direct support Europe is moving to implement a strong carbon border-adjustment mechanism (CBAM) that will incentivize the growth of the regional clean steel market & industry
	Relative domestic market maturity	Low	 Significant U.S. investment activity in incorporating emissions reduction/efficiency improvements across existing technologies, with small amounts of CCUS EPC activity occurring in U.S. Canada seeing significant CCUS EPC activity in part due to large-scale plants across other industries today. Additionally, potential opportunity created by the Canadian Steel Producers Association's (CSPA) Net Zero by 2050 commitment Most U.S. steelmakers perform in-house EPC, limiting the opportunity for separate , dedicated EPC providers Most investments in the space are internal investments made by existing market players, so are not captured in this analysis and likely underrepresent the relative position of U.S. steelmakers
	Regulatory environment & existing infrastructure	Low	• U.S. has strong regulatory and political ecosystem for steelmakers that provides sufficient capital, permitting, and labor support, but minimal opportunity for impact in clean steel sector aside from direct demand-side subsidies
	Overall ranking		Given EPC is so closely integrated with OEMs, U.S. has similarly low competitive advantage in the space today. Many domestic steelmakers has strong & experienced EPC teams dealing with EAF and DRI technologies, but limited standalone activity and a resistance to servicing other steelmakers reduces both the domestic growth opportunity & export potential

Offtake | U.S. production well-positioned given low carbon intensity, but behind on policy, financial support for generating clean steel demand

	Areas for Competitive Advantage	Ranking	Summary analysis 😒 = Key dimension
	Raw material availability	N/A	Not applicable in segment
	Intellectual Property & innovation	N/A	Not applicable in segment
	Research & technical leadership	N/A	Not applicable in segment
	Low operational costs	Low	 U.S. has higher labor costs given high average operator salaries, but any cost disadvantages are largely offset by the lower costs of energy, which are a major proportion of EAF steelmaking operating expenses. US maintains competitiveness in overall delivered cost within North America, given transportation economics, but is sensitive to fluctuating costs/outputs of foreign producers and changes in tariffs or anti-dumping regulations Overall costs are often comparable to European producers, which are subject to strict labor & environmental regulations and older mills, but higher than Asian producers, reflected by the higher average North American steel price/ton vs. average international markets historically Additionally, the historical low cost of domestic natural gas has driven investments in domestic DRI production facilities
	Demand / supply side policy	Low	 The U.S. has no dedicated, broad-based public clean steel policies. Minor movement around private-sector initiatives, such as the First Movers Coalition, and small public programs such as the Buy Clean Task Force and DoE grants, are helping generate small-scale demand, but domestic policy is behind competing nations in direct support Europe is moving to implement a strong carbon border-adjustment mechanism (CBAM) that will incentivize the growth of the regional clean steel market & industry
	Relative domestic market maturity	N/A	Not applicable in segment
	Regulatory environment & existing infrastructure	High	 U.S. is the major source of steel for North America and its production base is well-positioned for the clean steel transition. Given the high existing proportion of scrap-based EAF production, the U.S. is one of the lowest carbon-intensity producers globally today. Domestic producers could benefit from U.S. and international carbon border adjustment mechanisms and other emissions-related subsidies/incentives, as other steel producers must invest significant capital to come into emissions parity with U.S. minimills
	Overall ranking		With demand-side policy being by far the strongest driver of clean steel market demand, the U.S. is behind other nations with n ₈₁ incentives for clean steelmaking, but this can be rapidly shifted with changes in incentives & policy

Clean steel | Key assumptions and sources for modeling

Assumptions	Value	Impact on modeling	Source
Regional steel production volumes, 2020-2050	Variable	Any shifts in steel demand that are not modeled, included broad macro-economi trends or changes in steel consumption habits/consumption reduction measures, may impact overall steel demand and thus clean steel proportionally	
Steel price/ton, hot-rolled coil (HRC) as proxy for industry	NA: \$705/ton RoW: \$550/ton	HRC prices, used as proxy for the broader steel industry, directly drive steel offtake projections, and indirectly impact capital expenditure modeling by reducing overall market size	World Steel Association Steel Statistical Yearbooks
Proportion of steel production that is clean, global NZE scenario, 2050	95% (in 2050, variable)	% assumptions in each scenario drive overall market size by multiplying against global steel demand projections	IEA Iron & Steel Technology Roadmap, 2020
Proportion of steel production that is clean, global APS scenario, 2050	59% (in 2050, variable)	% assumptions in each scenario drive overall market size by multiplying against global steel demand projections	IEA Iron & Steel Technology Roadmap , 2020
Proportion of steel production that is clean, global STEPS scenario, 2050	37% (in 2050, variable)	% assumptions in each scenario drive overall market size by multiplying against global steel demand projections	IEA Iron & Steel Technology Roadmap , 2020

Disclaimer

The services and materials provided by Boston Consulting Group (BCG) are subject to BCG's Standard Terms (a copy of which is available upon request) or such other agreement as may have been previously executed by BCG. BCG does not provide legal, accounting, or tax advice. The Client is responsible for obtaining independent advice concerning these matters. This advice may affect the guidance given by BCG. Further, BCG has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate.

The materials contained in this presentation are designed for the sole use by the board of directors or senior management of the Client and solely for the limited purposes described in the presentation. The materials shall not be copied or given to any person or entity other than the Client ("Third Party") without the prior written consent of BCG. These materials serve only as the focus for discussion; they are incomplete without the accompanying oral commentary and may not be relied on as a stand-alone document. Further, Third Parties may not, and it is unreasonable for any Third Party to, rely on these materials for any purpose whatsoever. To the fullest extent permitted by law (and except to the extent otherwise agreed in a signed writing by BCG), BCG shall have no liability whatsoever to any Third Party, and any Third Party hereby waives any rights and claims it may have at any time against BCG with regard to the services, this presentation, or other materials, including the accuracy or completeness thereof. Receipt and review of this document shall be deemed agreement with and consideration for the foregoing.

BCG does not provide fairness opinions or valuations of market transactions, and these materials should not be relied on or construed as such. Further, the financial evaluations, projected market and financial information, and conclusions contained in these materials are based upon standard valuation methodologies, are not definitive forecasts, and are not guaranteed by BCG. BCG has used public and/or confidential data and assumptions provided to BCG by the Client. BCG has not independently verified the data and assumptions used in these analyses. Changes in the underlying data or operating assumptions will clearly impact the analyses and conclusions.

bcg.com