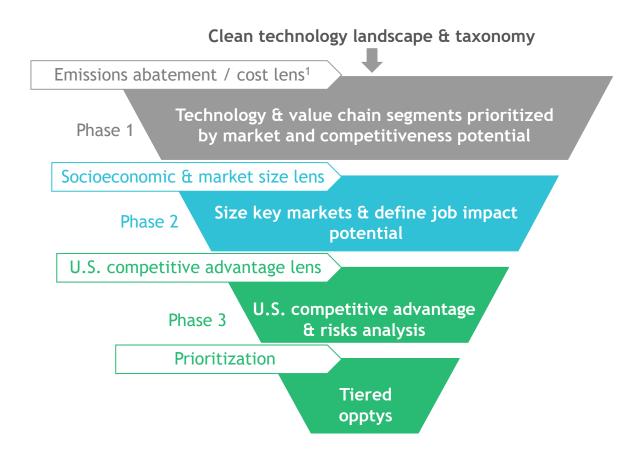
BCCG BOSTON CONSULTING GROUP

Two Paths to US Competitiveness in Clean Technologies

Publication Appendix

MARCH 2023

Table of contents


- 1 Context and approach
- 2 Technology selection
 - Summary findings
- 4 Technology-specific findings
 - Solar PV
 - Offshore wind
 - CCUS

3

• Geothermal

Context and approach

Context | 3-phase approach to prioritize technologies based on abatement potential, socioeconomic factors, and U.S. competitive advantage

Technologies will be split across 9 parts of the value chain for further analysis

Value chains will be adapted as need based on the specifics of the technology

Raw materials & inputs	OEM	Project Development	Financing	EPC	O&M	Transport & Storage	Offtake	Support Services
Definition per value chain segment								
Natural resources used as technology OEM inputs Fuels / inputs for energy generation and product production	Manufacture of critical technology components	Project origination & coordination • Site selection • Permissions & contracting • Secure financing	Providing capital & deal structure • Source, type & amount of funding	 Engineering, procurement & construction Detailed eng. design Supply chain mgmt Contractor mgmt. System testing 	Operations & maintenance • Baseline operations • Asset monitoring • Maintenance & repairs	Logistics of product final delivery to customer • Transport logistics • Product storage	Sale of end product to customer • Final offtake contracting • Sales channels / markets	Differentiated offerings to support use after sales E.g.: • Software • Consulting services • Auditing / certification
Example: Off	shore wind (illust	trative, not exh	austive)	.i				i
 OEM materials (e.g., steel, fiberglass, iron, copper, etc.) 	 Turbine components Offshore foundations Electrical infrastructure 	 Lease sales State/federal permitting Green PPAs Grid inter- connection 	 Debt, equity, grants, etc. PTCs and ITCs provide incentives 	 Supply chain management & transport Specialized vessels to install turbine 	 Preventative & corrective maintenance Automated condition monitoring 	 Included in EPC 	 Power produced injected into bulk transmission 	 Windfarms to be decommi- ssioned

Analysis completed for each prioritized segment and clean technology across three key metrics

Market

Market dynamics domestically and globally

- Global Total Addressable Market (TAM) over time across three scenarios
- U.S. Serviceable Addressable Market (SAM) over time across three scenarios, detailed for priority target markets
- U.S. Serviceable Obtainable Market (SOM), or U.S. exports, over time and across scenarios

Competitiveness

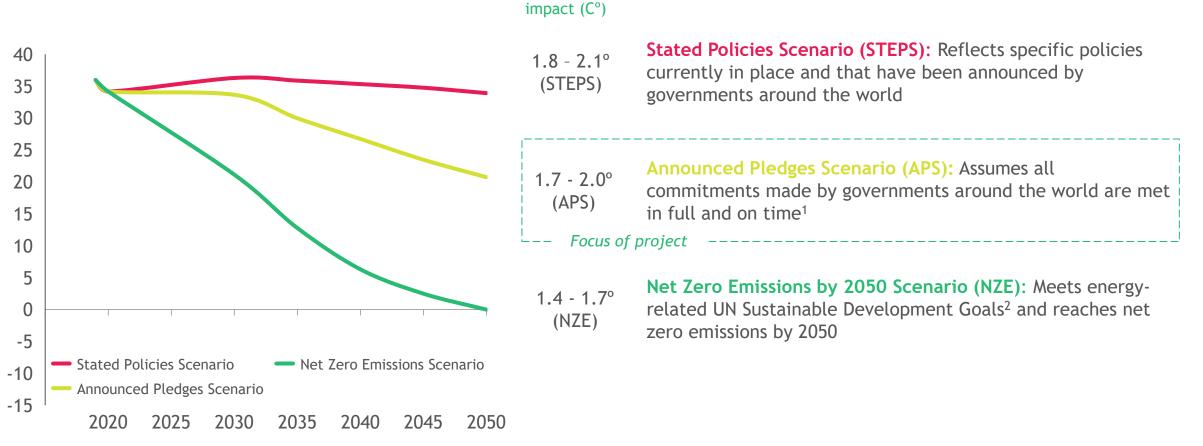
Qualitative and quantitative measure of competitiveness

- Access to constrained raw materials
- Relative intellectual property and technical research leadership
- Relative access to low-cost labor, energy, and inputs
- Levels of regulatory and policy support
- Comparative domestic market outlook
- Robustness of existing infrastructure

Societal impact

Relevance of value chain segment to global communities

- **Domestic job creation** potential in total positions and cumulative job-years
- Qualitative assessment of transferable skills and capability gaps



Market | Scenarios built on data from IEA World Energy Outlook deployment forecasts

Est. 2050

Scenario descriptions

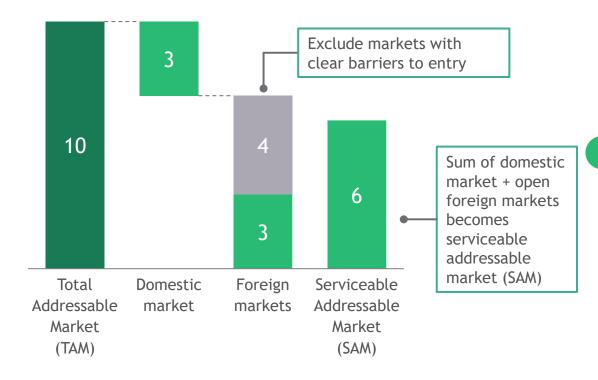
Annual CO2 Emissions (GTPA)

1. Includes Nationally Determined Contributions (NDCs) and longer-term net zero targets 2. Those goals related to universal energy access and major improvements in air quality Source: IEA World Energy Outlook 2021

Market | Market sizing completed at three levels

Total Addressable Market (TAM): Total market demand for a given product / service

Serviceable Addressable Market (SAM): Portion of TAM which can be feasibly accessed


Serviceable Obtainable Market (SOM): Portion of SAM which is can be captured SOM estimates leverage technology specific approaches using analogous examples

More detail on approach included on next slide

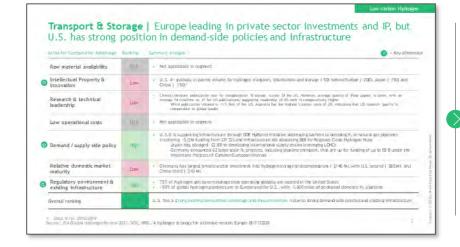
Market | The U.S. serviceable addressable market will exclude foreign markets with clear political or economic barriers to entry

Illustration of approach

Est. market size per prioritized segment and scenario (\$B)

Illustrative SAM calculation

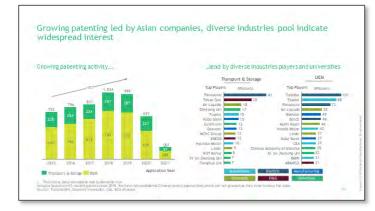
Total addressable foreign market size

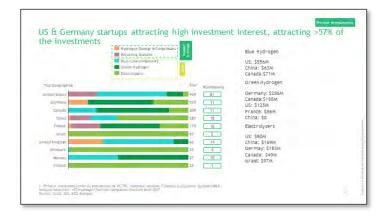

- Markets with clear political/economic barriers to entry
- Subtotal: Serviceable foreign markets

U.S. Domestic market

Serviceable Addressable Market (SAM) for the U.S.

Barriers to entry may be political (e.g., potential import bans or non-market barriers from China) or economic (e.g., unlikely to export products with high transportation costs to countries with sufficient domestic supply) **Competitiveness** | Fact-based analysis determined where the U.S. has existing advantage or potential to build


Segment-level assessment across 7 competitiveness drivers determined 3 x 3 placement



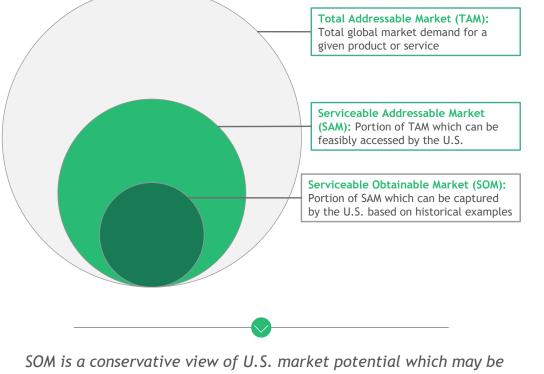
Competitiveness categories:

- 1. Raw material availability
- 2. Intellectual property & innovation
- 3. R&D leadership
- 4. Low operational costs
- 5. Demand / supply side policy
- 6. Relative domestic market maturity
- 7. Regulatory environment & existing infrastructure

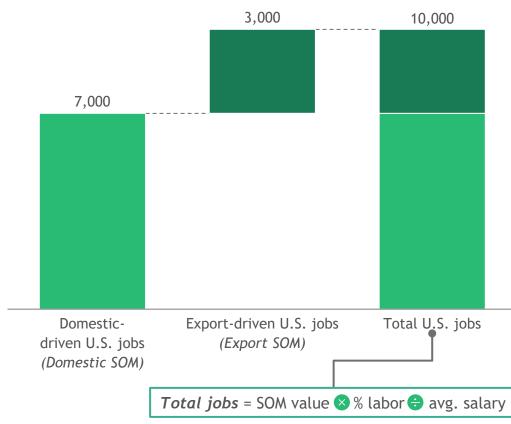
Detailed analysis of global patent, investment, M&A and legislative activity per value chain segment determined High/Low ranking in each of 7 categories

Copyright \odot 2022 by Boston Consulting Group. All rights reserved

Competitiveness | Deep dive on the seven contributing factors assessed in competitiveness analysis


Competitive advantage driver	Description
1 Raw material availability	Access (via robust global market or domestic reserves) to critical minerals required for building and maintaining technology
2 Intellectual Property & innovation	Opportunity for innovation leaders to build defensible IP with high potential to reduce costs or improve performance of technology
3 Research & technical leadership	Potential for research and training from public & private institutions to build technical leadership position , driving new innovations with a highly trained workforce
4 Low operational costs	Access to labor, energy, and other inputs at competitive price points in order to drive cost advantage
5 Demand / supply side policy	Depth and breadth of government policies (incl. incentives and direct investment) aimed at supporting the technology and driving at-scale deployments
6 Relative domestic market maturity	Size and scale of domestic players based on market share, investment, M&A activity, and other metrics denoting health and scale of players involved in technology
7 Regulatory environment & existing infrastructure	Maturity and accessibility of existing infrastructure along with ease of navigating regulatory environment to reduce start-up barriers for deploying technology

.10


Societal impact | Job numbers are conservatively based on Serviceable Obtainable Market, the lower bound of potential U.S. global market share

Review of market size definitions used

further increased with strategic policy support

Approach to jobs quantification

Societal impact | Definition and example of job-years

What are job-years?

- A "job-year" is a measure of employment based on the equivalent of employing a single FTE (full-time equivalent) for one year
- Job-years = # of jobs x duration of jobs

Why use job-years?

- Unlike using the absolute number of jobs, job-years capture both the number of new jobs created as well as how long a given job would be expected to last
- Job-years can be thought of as the total amount of employment a given segment would create over time

Illustrative example of job years vs number of jobs:

Construction: 15 new construction jobs which last 2 years each
15 jobs x 2 years per job = 30 job-years

O&M: 3 new maintenance jobs which last 10 years each
3 jobs x 10 years per job = 30 job-years

Despite construction seeming to have more **jobs**, it is equivalent to O&M in terms of total **job-years**

Societal impact | Definition and example of cumulative jobs

What are cumulative jobs?

- Cumulative jobs count the ongoing positions created over time, rather than individual jobs
- They are calculated as the net growth between the job-years in each year, representing the total growth in the number of positions over time

Illustrative example of job years vs number of jobs:

Construction: A temporary 1-year construction job that opens in 2025 and is repeated continuously through 2050

• This counts as 1 cumulative job

O&M: An operations job that opens in 2025 and is filled by the same person for 10 years until 2035

• This counts as 1 cumulative job

Project development: A 5-year project development job that opens in 2025 and lasts through 2030, and re-opens in 2035

• This counts as **2 cumulative jobs**

Regardless of who fills the **jobs** or how long they hold their position, cumulative job years show total growth in the number of positions over time

Technology selection

Six criteria were assessed to inform prioritization based on mitigation impact, economic growth, and national security / strategic interests

Criteria		Description				
CO2	Abatement potential	Describes the total abatement potential per technology in 2050 as Mt CO ₂ e / year, primarily based on IEA's Net Zero by 2050 Ro	admap			
CO2	Expected abatement cost	Describes the expected abatement cost of each technology on a \$ / ton of CO ₂ abated basis. Figures are primarily pulled from EI 2.0, with additional triangulation from IEA and proprietary BCG research	OF MACC			
	Feasible export types	 Summarizes preliminary view on most likely form of export, including: OEM: Physical assets or plant equipment which enables the associated technology IP: Ability to license a technology or process without necessarily exporting the physical assets O&M: Provision of core operations and maintenance services/tools required for the technology Product: Physical output products for the associated technology Services: Provision of non-core ancillary services to support a technology or associated market Software: Provision of software products or services to directly or indirectly support a technology 				
	Ease of export	 Summarizes preliminary view on how feasible exports for the export types shown may be, classified as: High: Currently traded in international markets Medium: Similar products are currently traded internationally Low: International trading is expected, but no similar examples exist today N/A: No trade exist due to clear barriers exist to international trade 				
()	Near-term deployment potential	 Defines the time scale at which each technology is expected to be deployed at based on IEA projections, defined as: High: Achieves >30% of abatement potential by 2030 Medium: Achieves >30% of abatement potential by 2035 Low: Achieves >30% of abatement potential by 2040 N/A: Achieves >30% of abatement potential after 2040 				
	National security and strategic interest	 Classifies the potential level of national security implications per technology, based on implications across several topics: High: Has direct potential military applications Medium: Provides liquid fuels Low: Supports grid resiliency N/A: Does not have any clear national security implications 	1!			

Long list of technolo	igles evaluated	a for potential	. analysis	High	Medium	Low N/A
😒 Selected in part 2 😧 Selected in part 1	Abatement potential (2050 Mt CO ₂ e)	Feasible export types	Expected cost (2050 \$/ ton CO ₂ e)	Ease of export	Near-term deployment	Nat'l security interest
Tier 1: Criteria-based priorities						
Grid-Scale LDES (electro-chemical) ⁴ Grid-Scale LDES (other) ⁴	Critical enabler	Product, IP, Software Product, Software	Critical enabler			
☆ Utility-scale Solar ⁴	6,500	Product	\$30			
Electric Vehicles ⁴	6,500	Product, IP, Software	\$20-60			
☆ CCUS ⁴	6,000 - 7,000	Product, IP	\$20 - 100			
Onshore Wind ^{4,10}	4,200 - 8,000	Product	\$10-40			
Hydrogen ⁴	4,100	Product, IP, Services	\$100-150			
☆ Offshore Wind ^{4,10}	1,100 - 2,000	Product	\$30-40			
Grid-Scale Li-ion ⁴	Critical enabler	Product, IP, Software	Critical enabler			
Advanced Nuclear (SMRs) ^{2,4}	300 - 500	Product, IP	\$110			
Smart Grid/Grid Infrastructure	Critical enabler	Product, IP, Software	Critical enabler			
Tier 2: Additional potential priorities						
DAC ^{4,5}	700 - 1,800	Product, IP	\$220			
Clean Cement ^{4,9}	1,500	Product, IP	\$60			
Sustainable Aviation Fuel (PtL) ^{4,7,11}	800 - 1,400	Product, IP	\$170			
DG solar ^{4,5,12}	800	Product, IP	\$90 - \$150			
Clean Iron/Steel/Aluminum (EAF) ^{4,8,9}	900	Product, IP	\$60			
Tier 3: Deprioritized						
Tech Solutions for Ag ^{1,4}	2,300	Product, Services	-\$230 - 130			
Energy Efficiency & Climate Services ⁴	2,100	Services	-\$10 - 70			
☆ Geothermal ⁴	2,000	Product, Services	\$50 - 150			
NBS in Agriculture ⁴	1,600	Services	\$100			
Residential Electrification ⁴	1,600	Product	\$100 - 140			
Biofuels ⁴	3,100 - 4,300	Product, IP	\$30-160			
Electric Charging Infrastructure	Critical enabler	Product, IP, Services	Critical enabler			

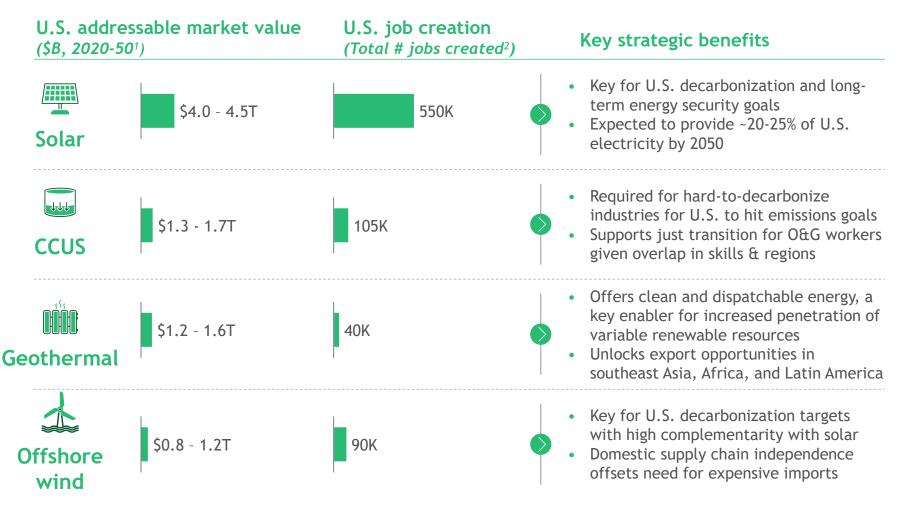
Long list of technologies evaluated for potential analysis

1. Includes zero-emissions farm equipment, emissions-reducing feed, modern animal & crop mgmt. practices 2. EDF MACC 2.0 Average costs

3. Drawdown Report, 4. IEA NZE 2050, 5. Princeton CMI, 6. World Resources Institute, 7. IATA, 8. Excludes CCUS-enabled abatement, 9. Impact extrapolated using current % of emissions where not included in explicit projections, WRI, 10. Cornell University MDPI, 11. Rocky Mountain Institute 12. DG solar cost extrapolated using LCOE premium relative to utility-scale solar

Backup | Sources for Carbon Abatement Potential

Key sources		Description		
	IEA (Net Zero Energy 2050 Report & others)	Key emissions milestones required by sector, including carbon abatement targets		
	Princeton CMI	Reviews technologies & scale required to achieve Net Zero emissions		
	EDF MACC 2.0	Carbon abatement impact by clean technology through 2050, including abatement costs		
	World Resources Institute	Historical view of carbon emissions by sector		
	IPCC	Reviews technologies & scale required to achieve <1.5 degrees warming		
Nor mer ber	Drawdown Report	Granular view of carbon abatement impact of highly specific initiatives across industries and emissions sectors		
Others sources include: IATA, NREL, Cornell MDPI, SEIA, RMI, LDES Society,		Industry group reports or technology-specific research studies		


International Geothermal Ass.

Backup | Descriptions of potential export types

Export types	Description	Examples
OEM	The physical assets or plant equipment which enables the associated technology	Li-ion battery packWind turbines / solar panels
Intellectual Property (IP)	The ability to license a technology or process without necessarily exporting the physical associated assets	 Direct Air Capture (DAC) technology Hydrogen electrolysis technology Clean cement production processes
Operations & Maintenance (O&M)	The provision of core operations and maintenance services or tools required to deploy the associated technology	 Contracting specialized vessels to maintain offshore wind farms Contracting to operate and maintain large CCUS plants
Product	The physical output products for the associated technology	 Clean steel products Clean hydrogen / ammonia Barrels of sustainable aviation fuel
Services	The provision of non-core ancillary services to support a specific technology or associated market	 Geothermal seismic studies to assess resource potential for future projects
Software	The provision of software products or services to support the operations of a technology, either directly or indirectly	 Battery operations software which help maximize project economics EV charging software to optimize charging and provide load-balancing grid services

Summary findings

The four technologies assessed in part 2 offer significant economic and strategic benefits to the U.S.

1. Cumulative size of serviceable addressable market for the U.S. from 2020-50 in the IEA's 2022 APS scenario, 2. Job creation calculated as the cumulative sum of net positive job-years (e.g., 2021 job-years minus 2020 job-years gives 2021 new jobs) Source: BCG analysis

700-850k Cumulative U.S. jobs created 16-18Gtpa

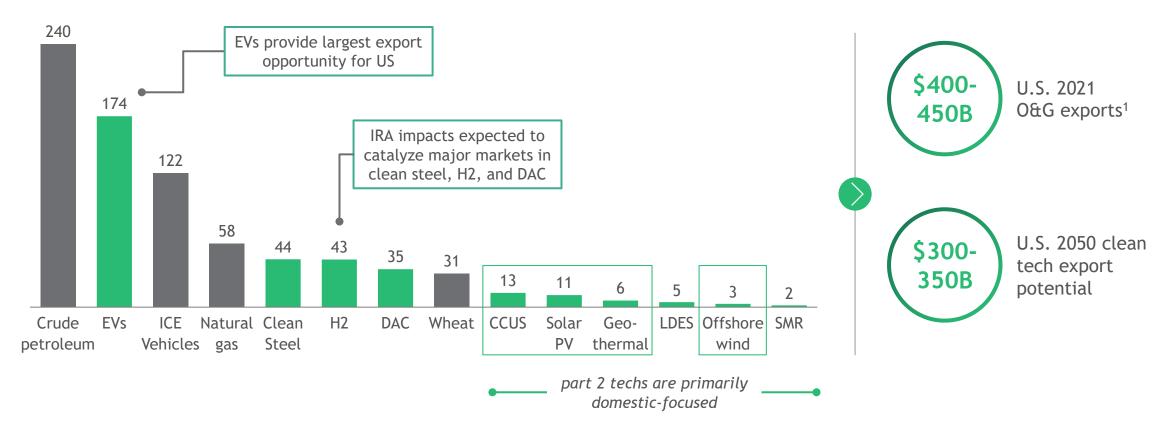
Decarbonization impact in 2050

45-50% of U.S. 2050 power generation

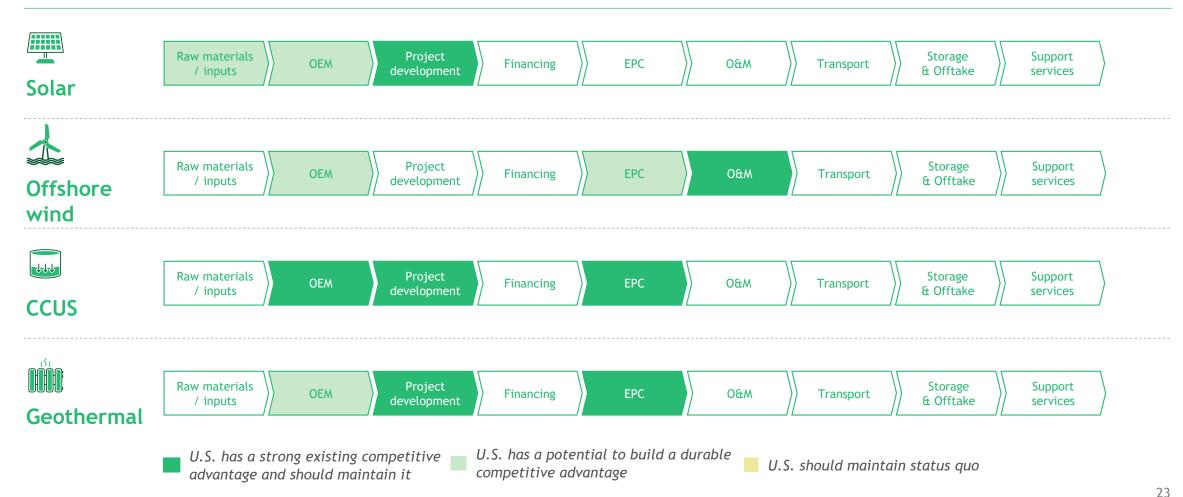
20

Across all four technologies...

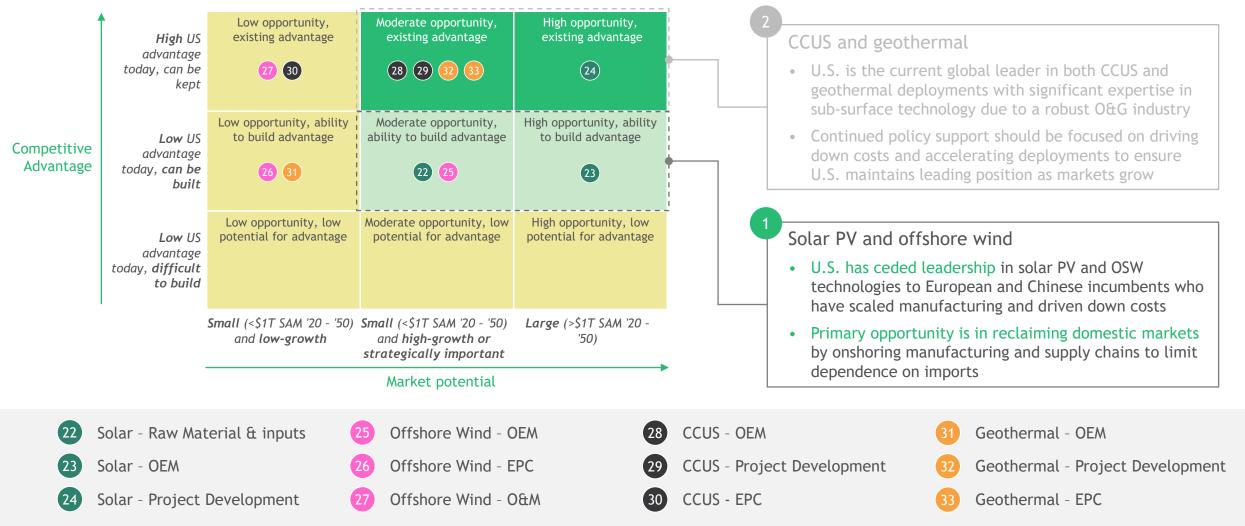
\$7.5-9T


Cumulative U.S. addressable market However, U.S. opportunity is primarily driven by the domestic market with limited export potential, unlike previous part 1 technologies

1. Values reflect sum of all value chain segments under the IEA APS scenario; TAM is the total market demand while SAM is the portion of the market that can be feasibly accessed by the U.S. 2. SAM divided by TAM gives a % of accessible market to the U.S. Source: IEA, BCG analysis


Despite relatively limited export potential of part 2 technologies, growth in clean technology export portfolio can help offset existing U.S. O&G exports

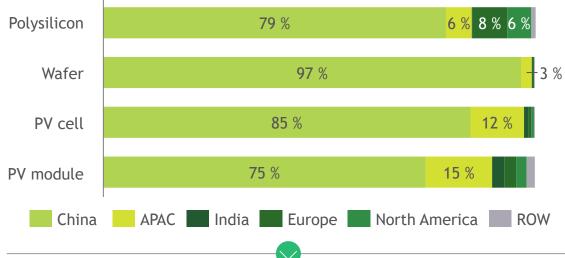
Comparison of legacy U.S. exports (\$B, 2021) to potential clean U.S. exports (\$B, 2050)



Prioritized segments for each technology were the focus of our analysis on U.S. competitive positioning

Prioritized value chain segments

Solar and OSW must recapture domestic manufacturing market, while CCUS and geothermal are well-positioned to lead global deployments



Note: Market potential placement based on APS scenario; Positioning within sectors is not relative

The U.S. has ceded leadership in both solar PV and offshore wind, particularly within manufacturing and development

China and APAC own >85% of solar manufacturing capacity across solar manufacturing activities

% of global manufacturing capacity, 2021

- % of
 - % of offshore wind capacity 2022 OSW capacity by 37 % 30 % 31 % 50 GW region U.S. pipeline through 2035 by 29 % 60 % 11 % 35 GW owner's region¹ CA floating 20 % 80 % 5 GW auction by winner's region UK ROW USA China FIL

deployments today and are expanding into the U.S.

China and Europe dominate offshore wind

- China dominates solar manufacturing, leading to high dependence on a single source for solar supply chain
- Tariffs against imports from China due to forced labor and from SEA due to circumvention present U.S. supply chain risks
- U.S. lags Europe and China in both total deployed OSW and in share of domestic development market
- Experienced European players are rapidly expanding into the U.S. market for both fixed and floating technologies

1. This only includes wind sites where owner is known. Many projects are in early planning stages and might not come to fruition. Source: IEA, 4C Offshore Wind Database, DOE, BCG Analysis

IRA and IIJA provide support across the value chain, giving U.S. opportunity to recapture domestic market share

Solar PV

Solar PV incentives create opportunity to build a secure domestic supply chain

Wafer, cell,

and module mfg.

Deployment

- Advanced manufacturing production credits for polysilicon helps U.S. polysilicon to be more cost-competitive to Chinese polysilicon
- IRA domestic manufacturing tax incentives for each step of the upstream value chain wafer, cell, and module - provide support to onshore manufacturing in the U.S.
- U.S.-produced modules can potentially be ~25% cheaper for domestic projects than **imports** from SEA/China due to the incentives
- U.S. solar deployment may expand by ~75% by 2050 due to extended ITC and PTC credits for electricity producing clean energy

Offshore wind

IRA credits reduce OSW costs and position the U.S. to serve a rapidly growing domestic market

- Permitting & devt. Turbine and foundation mfg. Construction Generation
- **Expansion of lease areas** accelerates wind area auctions
- Manufacturing credits support domestic supply chain and position U.S. for regional exports
- \$50M into floating RD&D and goals to reduce costs by 70% accelerate floating deployment
- Infrastructure expansion is facilitated through • \$600M for port upgrades and a '10% of sales price' tax credit for building installation vessels
- ITCs / PTCs guarantee long-term revenue streams during electricity generation, helping to de-risk project financing

Recapturing domestic solar and offshore wind markets requires offsetting U.S. cost disadvantages to reclaim manufacturing market share

Challenges to address

High labor costs (i.e., U.S. manufacturing labor is 2-5x more expensive than SEA and China) make it difficult for U.S. manufacturing to be competitive with imports

Lack of skilled labor, particularly in areas with technical expertise (e.g., engineers, technicians, factory workers), inhibits rapid scale-up of domestic industries

Near-term uncertainty around offtake demand, supply chain disruption, and infrastructure development, dissuades manufacturers from investing in U.S. mfg.

Loss of IP leadership to foreign players (e.g., floating platforms for OSW and cell technology for solar) hinders innovation and diminishes U.S. export potential

Potential solutions to boost competitiveness

Rapidly capture economies of scale and accelerate research into manufacturing innovation and modularity to reduce costs of manufacturing labor-intensive components (i.e., blades and foundations for OSW, modules and cells for solar)

Implement localized **workforce training programs**, support favorable immigration policies, and **reskill legacy workforce** to proactively address potential shortfalls

Clear supply chain issues by clarifying regulatory trade policies for solar PV for near-term deployment, and facilitate infrastructure building through transmission planning to encourage local supply chain activity

Reclaim IP lead by incentivizing domestic R&D, setting up higher-level academic programs and demonstration centers, and commercializing novel techs by reducing their costs

Deep dive | Solar Manufacturing and development enablers make the U.S. competitive with lowcost imports

Example high-potential enablers

Enable vertically-integrated manufacturing at scale: De-risk investment (e.g., loan guarantees, cost sharing agreements) to build integrated wafer, cell, and module facilities at scale and fund innovation in both technology and manufacturing processes, reducing production costs

Reform interconnection processes: Improve transmission planning and interconnection processes to reduce grid connection delays and enable equitable cost allocation to developers for utility-scale solar projects

Expand and upgrade transmission grid: Invest in rapid expansion and upgrades of grid infrastructure to accommodate the increased load and added variable capacity due to solar deployment, increasing confidence in domestic manufacturing

Formulate workforce development programs: Establish solar-focused apprenticeship and technical programs in collaboration with manufacturers, governments, and educational institutions to create a diverse talent pipeline

Trends to monitor

Expansion of Chinese manufacturing capacity: Continuing expansion of manufacturing facilities in China across each value chain segment may lead to further concentration of solar manufacturing, increasing supply chain risks

Impact of circumvention case and forced labor policy: Further deployment delays may occur due to the circumvention case outcome and unclear guidance on the UFLPA¹ in the U.S. and possible forced labor policy in the E.U.

1. Uyghur Forced Labor Prevention Act Source: BCG Analysis

Deep dive | Offshore wind Addressing transmission issues enables clear demand pipeline to justify local supply chains, boosting U.S. competitiveness

Example high-potential enablers

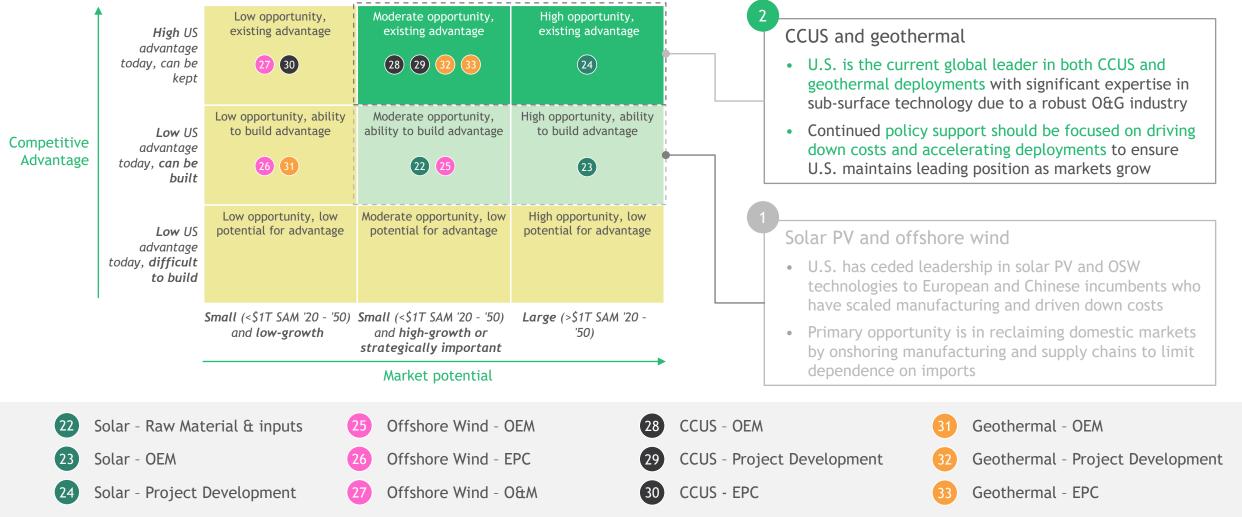
Support permitting reform: Reduce regulatory barriers across state and federal levels, increase permitting certainty, and create timeline clarity to de-risk project development and help developers secure access to financing

Reform transmission grid planning: Plan and build an interstate high-voltage transmission system for OSW to replace generator lead line approach that puts cost burden on developers and is unsustainable for interconnection volume

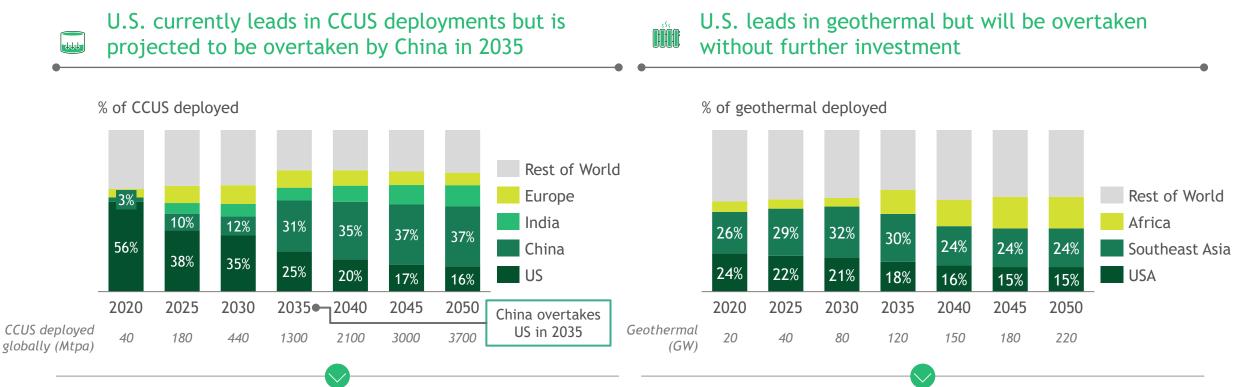
Scale manufacturing of components and equipment: Accelerate research into manufacturing automation and modularity and support industry-wide standardization efforts to reduce mfg. / infrastructure costs and secure supply of high-risk components

Deploy nascent floating tech at scale: Accelerate demonstration projects and reduce floating costs through increased deployment and standardization to take advantage of deep-water wind areas and capture export potential

Trends to monitor



Projected future shortages of key materials: Dependency on China for rare earth magnets for generators might lead to future supply chain disruptions


Foreign players' floating OSW progress: European and Chinese players lead floating demonstration and patenting activity and are expanding abroad. U.S. must accelerate floating deployment to secure exports before competitors do

Recall | Solar and OSW must recapture domestic manufacturing market, while geothermal and CCUS are well-positioned to lead global deployments

Note: Market potential placement based on APS scenario; Positioning within sectors is not relative

The U.S. is currently a global leader in both CCUS and geothermal, but other players may displace the U.S. without active policy support

- China is expected to overtake U.S. as largest CCUS market by 2035 and will comprise ~40% of global market by 2050
- Non-Chinese and non-U.S. markets account for <50% of global market capacity by 2050

- U.S. leads the world in capacity and has durable advantages in drilling and exploration, but market is relatively small unless innovations unlock upside
- Strategic export opportunities exist in concentrated regions like SEA, Africa, and Latin America

IRA and IIJA accelerate domestic CCUS and geothermal market growth, potentially positioning U.S. players to build early-mover advantage

Expanded CCUS credits accelerate U.S. deployment potential and potential first mover advantage

CCUS

444

Geothermal

Geothermal provisions are limited, though may boost deployment by improving project economics

U.S. must continue to leverage strengths and capitalize on existing lead to maintain position globally for CCUS and geothermal

(>

Challenges to address

High costs today as both technologies need to come down the learning curve to be cost competitive. Commercial scale deployments needed to support manufacturing scaleup and drive down costs

Long permitting timelines (esp. for sub-surface components) take up to 6 years, inhibiting ability to rapidly scale-up deployments and adding additional risk to project financing which dissuade investment

Lack of demand-side signals and corresponding lack of monetization opportunities make it difficult to incentivize project and R&D investment

Limited high-quality data characterizing the subsurface makes exploration and development more expensive and uncertain for both technologies

Potential solutions to boost competitiveness

Provide support and funding for in-field research and early commercial deployments of innovative technologies (e.g., EGS, supercritical drilling for geothermal; metal organic frameworks, electroswing absorption for CCUS) with funding for initial manufacturing hubs to de-risk private investment

Reform permitting to shorten timelines and standardize processes under a single agency's jurisdiction. Align on federal rules for assuming long term subsurface liabilities and extend favorable O&G provisions (e.g., categorical exclusions, caps on BLM reviews, more frequent auctions)

Enhance data sharing and collection on existing hydrothermal and O&G reservoirs, hydrothermal conductivity, and other geologic characteristics (incl. sink to source matching for CO_2) **Deep dive | CCUS** Establishing long term monetization opportunities and supporting CO₂ infrastructure will enable the U.S. to further build on its lead in global CCUS deployments

Example high-potential enablers

Create CO₂ regulations and / or long-term monetization opportunities: Establish permanent monetization opportunities for CCUS either through regulations mandating CO_2 reductions (e.g., emissions limits for gov't procured steel) or pricing carbon emissions within certain industries¹ (e.g., LCFS in CA)

Continue to support near-term commercial deployments (e.g., U.S. carbon capture hubs) to further drive down costs of CCUS, leveraging US gov't procurement and other levers. Focus on next gen CCUS tech which can decarbonize applications with low CO_2 concentration in emission stacks

Establish processes for transport & long-term storage / monitoring of CO₂: Define federal-level regulations and provide funding for transport, storage, and monitoring of CO_2 (e.g., length of liability for private companies, permanence) and define clear & efficient permitting processes

Accelerate the transition of O&G workers to CCUS in order to meet labor needs by establishing training programs and incentives for workers to begin developing the necessary skills

Trends to monitor

Net-zero targets and policies: More aggressive net-zero targets & policies will increase demand for CCUS to address hard-to-abate emissions, increasing US export opportunities

Global regulations & standards for CCUS: Several nations (esp. in the EU) remain opposed to CCUS, given its enablement of continued O&G and inability to capture 100% of emissions; universal standards for CCUS will be needed to drive widespread global deployments

Deep dive | Geothermal U.S. poised to build on leadership position but needs to address noneconomic barriers that stifle rapid deployment and support early commercialization efforts for emerging technologies

Example high-potential enablers

Expedite permitting and streamline regulation: Remove barriers to deployment that drive up cost and increase risk for developers (e.g., categorical exceptions, caps on BLM reviews, and target lease approvals)

Enhance demand-side signals: Increase demand to encourage private investment in exploration, development, and innovation (e.g., govt. procurements, firm zero-carbon power incentives)

De-risk investment in emerging technologies: Enhance demonstration grant funding for technologies that will drive durable competitive advantages and can be exported (e.g., lithium extraction, EGS, and supercritical drilling)

Enable rapid scale up: De-risk private investment in new development and enable domestic players to accelerate learning curve on new technologies and achieve economies of scale (e.g., loan guarantees, risk insurance, tax credits)

Trends to monitor

Viability of lithium extraction at scale: The pilot at the Salton Sea, which contains nearly as much lithium as Chile and Bolivia combined, is the largest in the world and could prove the viability of a domestic lithium supply chain

Progress of state-backed competitors: Large state-backed geothermal companies in Indonesia, Kenya, and Turkey are investing in new capacity and technologies, potentially surpassing the U.S. as the global leader and capturing the massive upside of geothermal

Summary enablers to unlock competitive advantage

Demand side enablers

Boost competitiveness by increasing capacity deployed to drive costs down the learning curve

Decrease green premiums

Increase demand by either reducing the cost of the technology or increasing the cost of emitting alternatives

Increase volumes deployed

Increase total technology deployment through direct procurements or deployment targets

Ensure access to export markets

Facilitate domestic companies' exports by clearing non-tariff barriers

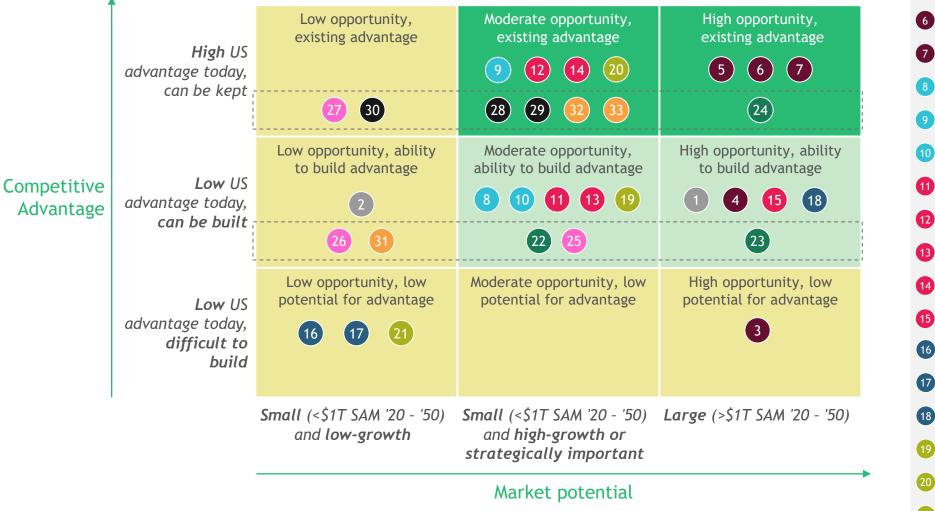
Supply side enablers Boost competitiveness by building economies of scale in manufacturing and maintain lead in IP

<mark>⊘∕⊗∕</mark>⊘

Streamline deployment

Reduce barriers to deployment and streamline permitting processes to de-risk investment in projects, increasing capacity deployed

De-risk infrastructure investment


Increase access to capital for relevant projects and facilitate infrastructure building, decreasing cost burden on developers

Maintain lead in innovation

Promote RD&D to maintain technological competitiveness in quality/cost and translate research leadership to commercial success Draft - to be refined

Backup | Prioritization of Part I and Part II segments for U.S. to build competitive advantage

5

SMR - EPC

Note: Market potential placement based on APS scenario; Positioning within sectors is not relative

Technology-specific findings

Solar PV

Solar | Definition of each segment across value chain

Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations/ Maintenance	Offtake	Support services
Utility-scale							
Mining and refining of raw materials for: Solar cell (silicon, cadmium, tellurium, copper, gallium, etc.) Balance of System (copper wiring, silver, aluminum, steel, glass, etc.) C&I and Residenti	R&D: Significant R&D is ongoing (e.g., CdTe, thin film) to refine solar PV technology PV module: Manufacturing of wafer, thin-film module, etc. and assembling into a PV module Balance of system (BOS) equipment: Manufacturing and assembly of wiring, switches, inverters, battery bank, charge controller and electric grid	Development includes: • Origination • Site selection • Land acquisition • Interconnection • Permitting and studies • Insurance • Power Purchase Agreement (PPA) May be developed in tandem with storage or standalone	Developer typically arranges project financing Financing is available through Private banks Bank loans Third party solar PPA Tax equity partnerships can help to take advantage of incentives such as Investment tax credits (ITC) etc.	 EPC includes: Final site design and engineering Procurement PV module transport and storage On-site solar panel installation Final assembly & connection to electric grid Testing EPC process may be done in tandem with storage or can be done standalone 	 Operations: Manage budget Monitor solar plant real-time Optimize operations Maintenance: Preventative (routine inspection) Corrective (repairs and replacement due to panel cracking, inverter failure, etc.) Condition-based (predict breakdowns using real-time data) 	Acts as 'front of the meter ' system as power is injected directly into the bulk transmission grid	Renegotiate lease and offtake once PPA term is up Recycle salvaged modules and manage hazardous materials (e.g., CdTe, lead)
Same as above	Same as above	Dovolopmont	Owner of the	Installer does:	Ownor usually	Act as 'behind the	Same as above
sume as above	 Racking equipment is different for distributed system compared to utility-scale 	 Development includes: Origination / customer acquisition Site visit System size and design evaluation 	Owner of the business or residence arranges project financing, often via developer May take advantage of Investment tax credits (ITC)	 Final site design and engineering Panel and BOS installation and connection Testing 	Owner usually operates and monitors the solar installation and may use a contractor for regular maintenance	Act as bening the meter' system as power generated can offset customer usage or be injected into distribution grid	same as above 40

Solar | Opportunity to win domestic market by focusing on raw materials, OEM, and project development segments

Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations/ Maintenance	Offtake	Support Service
APS market <i>(cumul</i>	ative U.S. SAM 2020	- 2050, \$B)					
\$150 - 200B	\$700 - 800B	\$2,000 -2,500B	\$100 - 150B	\$400 - 500B	\$300 - 400B	N/A	\$100 - 120B
Competitive Advan	tage						
Building scale to economically produce polysilicon (silicon is available abundantly) will help U.S. to offset China's monopoly (~80% of global polysilicon production), and diversify its raw material supply chain and input into OEM	Economies of scale benefits, and IP advantage in a fast tech lifecycle create opportunities to build a competitive advantage in new innovative solar technologies if sufficient manufacturing scale and IP generation can be reached	Project developers can build competitive advantage because of availability of wide range of technical expertise (e.g., regulatory, resource analysis etc.), optimal sites (abundance of solar resource in US) and knowledge of complex processes (e.g., permitting, etc.)	As an established technology, solar financing is typically readily available, limiting potential for competitive advantage	While solar EPC requires technical knowledge, necessary skills (e.g., construction, electrical wiring, etc.) are typically widely available, reducing potential for competitive advantage	Solar O&M is mostly regional or local and, while logistically challenging, necessary expertise is widely available. This limits potential for competitive advantage outside local markets	Offtake is highly regulated and local or regional in nature, with power offtakers being either regional electricity grids or local communities / industrial /commercial users. Little potential for competitive advantage exists	As plants reach end-of-life, recycling solar components (especially critica elements such as aluminum, silver, silicon etc.) can create a large potential industry Nascent stage of the industry creates potential to build early competitive advantage via sca

Solar | Raw materials & inputs

DESCRIPTION OF TECHNOLOGY

Raw materials & inputs for solar PV includes materials for the PV module (polysilicon, aluminum, glass, resin), and additional components which make up the balance of system (e.g., plastic, copper, steel, wiring, etc.). Most inputs are widely available and relatively low-cost, except polysilicon which needs to be produced using a technical process of purifying silicon.

	MARKET DYNAM	ICS			
\$150 - 200B		2020	2030	2040	2050
Cumulative APS U.S. SAM (\$B, '20-50)	SAM (\$B, APS)	\$2 - 4	\$5 - 10	\$4 - 6	\$2 - 4
	Annual global additions (GW)	130-140	530-540	410-420	350-360
	Avg. margin (%)	25 - 75%			

GLOBAL PLAYERS - COUNTRIES

China (80% of global polysilicon)U.S., Germany, South Korea (rest 20%)

VALUE PROPOSITION

U.S. can offset China's monopoly (~80% share) in polysilicon manufacturing and diversify its raw material supply chain by building sufficient polysilicon production capacity to achieve economies of scale, and utilizing low-energy cost-effective process technology (e.g., FBR over Siemens process)

COMPETITIVE ADV	ANTAGE	
Raw material availability	Most of the inputs such as aluminum, glass, copper etc. are commoditized and easily available across the globe. China produces 80% of global polysilicon, but since silicon is abundantly available in the earth's crust, U.S. can build competitive advantage by diversifying its polysilicon supply by building domestic capacity at scale	M
Demand / supply side policy	IRA incentivizes domestic production of polysilicon by providing investment tax credits and manufacturing credits including an adder tax incentive called 'domestic content'	н
Regulatory environment & existing infrastructure	Domestic manufacturers are restarting and upgrading their existing inactive polysilicon plants (tariff war with China led to their closure) while concurrently planning to build new plants near cheap energy source with latest process technology to produce polysilicon cost- effectively	M

High Medium Low N/A

Solar | OEM

DESCRIPTION OF TECHNOLOGY

OEM includes manufacturing of solar PV modules and Balance of System equipment. Solar PV panel production includes conversion of polysilicon to ingot, ingot to wafer, wafer to cells and cells to module. Very few manufacturers are vertically integrated. BOS equipment manufacturers produce inverters, racking, cables, fuse, switches, etc. US leads in manufacturing other solar technologies such as thin film (CdTe) which require a completely different set of OEMs.

	MARKET DYNAM	NCS			
\$700 - 800B		2020	2030	2040	2050
Cumulative APS	SAM (\$B, APS)	\$10 - 15	\$35 - 40	\$15 - 20	\$10 - 15
U.S. SAM (\$B, '20-50)	Annual global additions (GW)	130-140	530-540	410-420	350-360
	Avg. margin (%)	5 - 25%			
GLOBAL PLAYERS -	COM	PANIES			

GLOBAL PLAYERS - COUNTRIES

Country with the largest solar PV module production (~80%) Rest of the countries with major solar PV module production

Module Inverters Trackers 5 🕅 nextracker CanadianSolar HUAWEI SUNGROW Soltec First Solar, SMA ARCTECH LONG **JA**SOLAR solaredge AKKA

VALUE PROPOSITION

Economies of scale benefits and IP advantage in a fast tech lifecycle create opportunities to build a competitive advantage in new innovative solar technologies if sufficient manufacturing scale and IP generation can be reached

COMPETITIVE ADVANTAGE

Intellectual Property & innovation	Even though China currently produces more than 80% of modules with significant R&D and IP ownership, their plants mostly use PERC technology. Therefore, U.S. can build competitive advantage by utilizing newer technologies whose patents have expired (e.g., Heterjunction, TOPCon) in new plants to produce higher-efficiency and lower-cost modules	1
Research & technical leadership	U.S. can build competitive advantage by creating a highly-skilled workforce through trade programs and advanced academic research through existing research institutions to further innovate higher-efficiency and lower-cost process technologies	1
Demand / supply side policy	U.S. manufacturers can build price competitive advantage by using IRA manufacturing credits to build new plants for solar module or BOS equipment. Incentives cover a wide range of tax credits including manufacturing of polysilicon, ingot, wafer, cell, inverters, and are priced such that manufacturers can outprice imported modules. Eventually by building plants at scale, they can bring costs down and become self-sufficient without the need of subsidy	ł

High	Medium	Low	N/A
------	--------	-----	-----

43

Raw materials & inputs Project Development Operations/ Maintenance Support Services EPC Offtake Financing

Offtake

Support Services

Operations/ Maintenance

EPC

Solar | Project Development

DESCRIPTION OF TECHNOLOGY

Project Development includes activities such as site acquisition, solar resource analysis, permitting, interconnection, PPA and financing, environmental review, minimizing risk, construction, and operations planning. Solar developers may become owners and operators of the solar farm but often sell the plant to independent power producers or infrastructure funds. Project development activities differs minorly across utility-scale, C&I and residential developers.

	MARKET DYNAM	ICS			
Ş2000 -		2020	2030	2040	2050
2500B Cumulative APS U.S. SAM	SAM (\$B, APS)	\$45 - 55	\$90 - 100	\$60 - 70	\$50 - 60
	Annual global additions (GW)	130-140	530-540	410-420	350-360
(\$B, '20-50)	Avg. margin (%)	5 - 25%			
GLOBAL PLAYERS ·	CON	PANIES			

Project developers can build competitive advantage because of availability of wide range of technical expertise (e.g., regulatory, resource analysis etc.), optimal sites (abundance of solar resource in U.S.) and knowledge of complex processes (e.g., permitting, etc.)

OFM

Raw materials & inputs

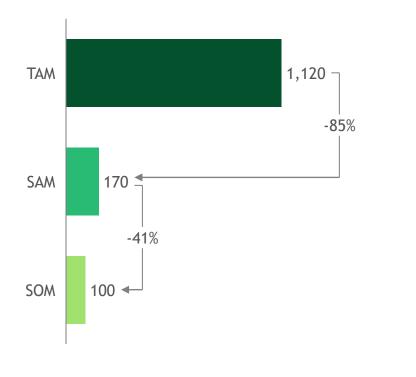
COMPETITIVE ADVANTAGE

Research & technical leadership	Availability of technical skilled labor for activities such as solar resource analysis, interconnection etc. provides competitive advantage to existing domestic project developers	M
Demand / supply side policy	In the short-term, U.S. project developers can build a cost competitive advantage by taking maximum advantage of IRA incentives and existing relationships with local stakeholders but in the long-term, scale and innovation will help to build durable advantage	M
Relative domestic market maturity	Local nature of project development creates a competitive advantage for domestic players compared to the few international players as diseconomies of scale start to affect the cost of bigger players	M
Regulatory environment & existing infrastructure	Knowledge of domestic regulations, processes and challenges (e.g., interconnection) can help project developers differentiate themselves from others with no or limited knowledge of the solar landscape in the U.S. New interconnection reforms proposed by Federal Energy Regulatory Commission (FERC) would further enable clearance of interconnection backlogs and speed up solar deployment. Abundant presence of solar resource in the U.S. acts as a natural advantage.	M

High	Medium	Low
------	--------	-----

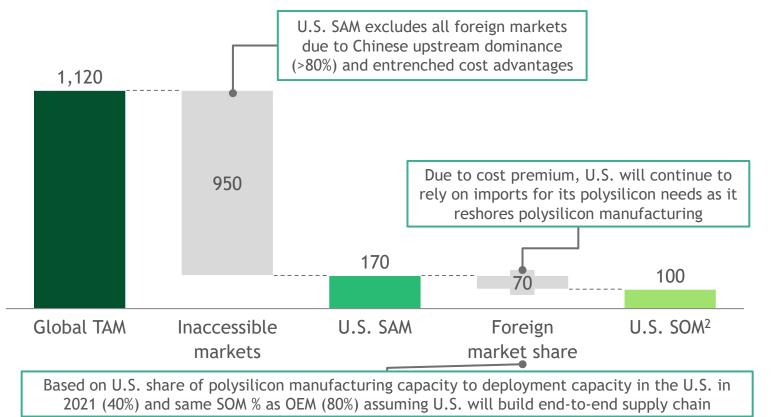
N/A

developers

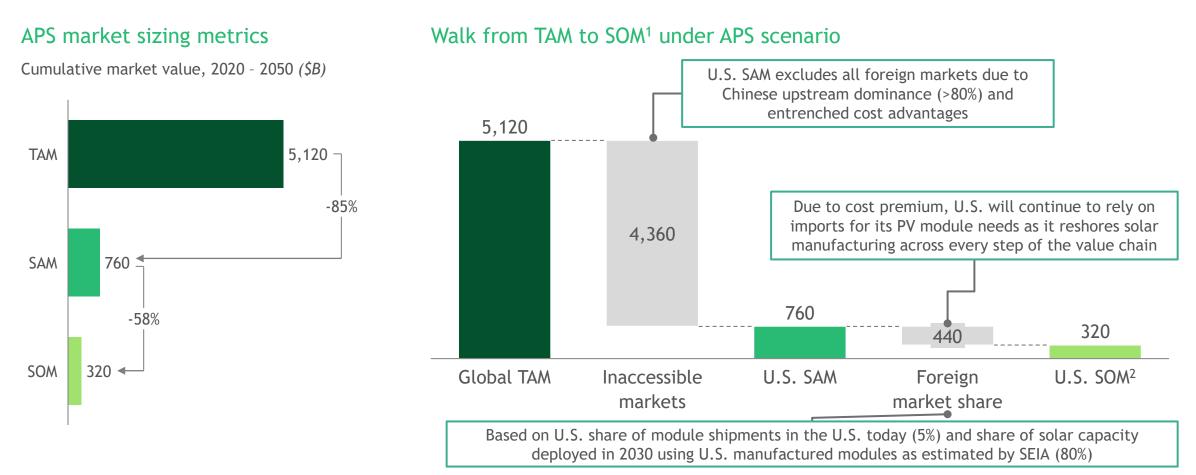

Solar | India and E.U. markets are dependable opportunities across scenarios, while the U.S. domestic market presents large potential

Installed solar capacity through 2050 by market and scenario (GW)

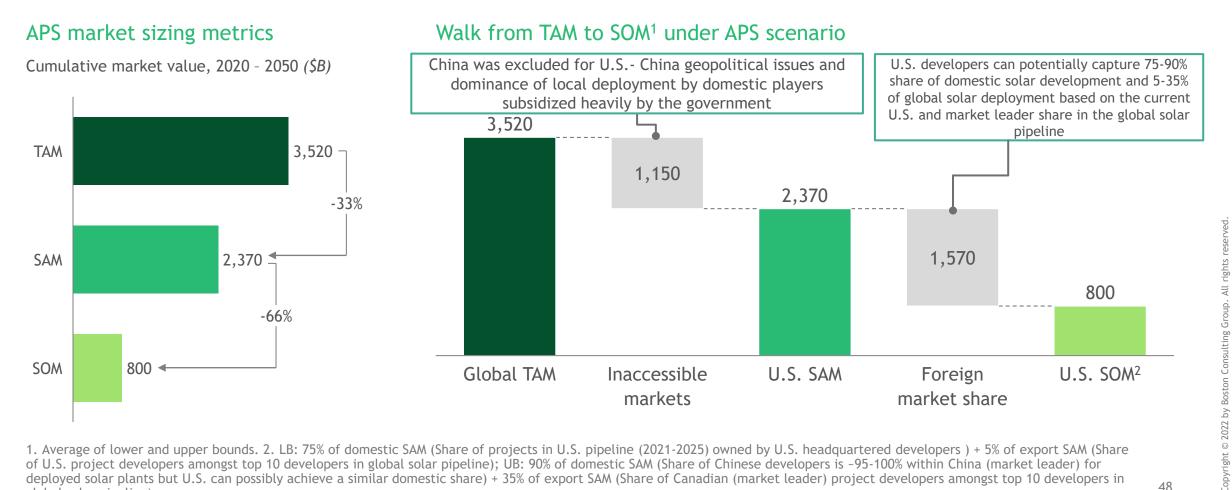
Priority markets Non-serviceable markets Priority markets show consistent potential across scenarios 6,000 While a large market under NZE, Middle East is less than one-Existing Indian policy targets 450 GW third the size of 4,210 of renewables by 2030, driving priority markets significant growth in STEPS and APS 3,380 2,450 1,890 1,890 1,870 1,540 1,340 1,180 890 890 750 540 260 **United States** India E.U. Middle East China U.S. and E.U. 2050 pledges align APS with NZE, though policy gap to STEPS creates While a very large market, exporting to large downside potential China is unlikely due to China's dominance and geopolitical issues


NZE APS STEPS

Raw Material | U.S. share of polysilicon manufacturing of ~10% of global TAM implies a conservative potential U.S. SOM of ~\$50 - 150B through 2050 for solar raw material & inputs

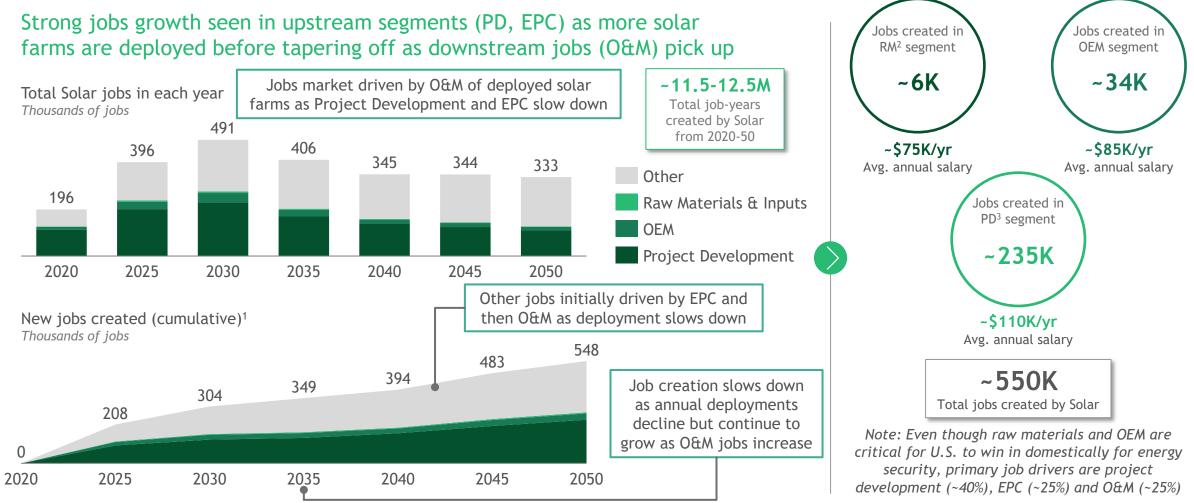

APS market sizing metrics Cumulative market value, 2020 - 2050 (\$B)

Walk from TAM to SOM¹ under APS scenario


1. Average of lower and upper bounds. 2. LB: 40% of domestic SAM (Share of U.S. capacity for polysilicon production to U.S. solar deployment in 2021); UB: 80% of domestic SAM (Same as OEM assuming U.S. will build end-to-end supply chain from polysilicon to module due to IRA incentives) Source: IEA World Energy Outlook 2022; BCG analysis

OEM | U.S. share of OEM manufacturing of ~5 - 10% of global TAM implies a conservative potential U.S. SOM of ~\$300 - 400B through 2050 for solar OEM

1. Average of lower and upper bounds. 2. LB: 5% of domestic SAM (Share of domestic module manufacturing within total PV module shipments in the U.S. in 2022 to date); UB: 80% of domestic SAM (SEIA predicts U.S. can build up to 50GW of solar manufacturing by 2030 and we estimate U.S. will build 64GW capacity in 2030). Source: IEA World Energy Outlook 2022; BCG analysis


Project Development | U.S. share of project development of ~20 - 25% of global TAM implies a potential U.S. SOM of ~\$650 - 750B through 2050 for solar developers

1. Average of lower and upper bounds. 2. LB: 75% of domestic SAM (Share of projects in U.S. pipeline (2021-2025) owned by U.S. headquartered developers) + 5% of export SAM (Share of U.S. project developers amongst top 10 developers in global solar pipeline); UB: 90% of domestic SAM (Share of Chinese developers is ~95-100% within China (market leader) for deployed solar plants but U.S. can possibly achieve a similar domestic share) + 35% of export SAM (Share of Canadian (market leader) project developers amongst top 10 developers in global solar pipeline).

Source: IEA World Energy Outlook 2022; BCG analysis

Solar | ~550K jobs expected to be created by 2050 with Raw Materials, OEM, and Project Development driving ~50% of total jobs created

1. In APS scenario; incremental new jobs calculated as the sum of all non-negative one-year differences in # job-years (e.g., 2021 job-years minus 2020 job-years gives 2021 new jobs); incremental new jobs added to sum from prior period for cumulative calculation 2. Raw Materials & inputs 3. Project Development Source: IEA, BCG analysis

Raw materials & inputs | Lack of integrated supply chain and high operational costs a key challenge in expansion of polysilicon manufacturing

		•				-			•		> - k	ley dimension
Areas for Competit	tive Advantage	Ranking	Summary	y analysis							- 1	
Raw material av	ailability	Low	(MG • Uyg	S) - with U.S. ha hur Forced Labo	aving <9% an or Preventior	d the rest of the Act in the U.S	the main raw ma ne capacity comin 5. bans imports o ons outside Xinjia	ng from EU, Aus f products using	stralia, Brazil, So	outh Africa ar	nd Malay	/sia
Intellectual Prop innovation	erty &	Low	the	Siemens techno	logy for poly	ysilicon manufa	ng Fluidized Bed I acturing; as REC S energy polysilicon	ilicon ¹ (FBR pat	tent holder) has	started to us	e FBR ir	
Research & tech leadership	nical	High	Res Out	earch activity is side China, only	led by Chine the U.S. and	ese universities d Germany hav	in 2 nd place) proc s with U.S. DOE in re sizeable capac nlock (American)	n 2 nd place, whi ities, hence the	ile Indian and Sw 9 U.S. can levera	viss universiti ge the techn	es featı ical kno	whow of its 3
🔂 Low operational	costs	Low		U.S. and EUU.S. electric	J manufactur city prices a	ring labor is sig	y (~40% of total c nificantly costlie in EU and Japan I nd reach similar e	r than other ma out more expen	arkets (~\$50/hr i sive than China	n the U.S. &		
🔂 Demand / supply	side policy	High					U.S. polysilicon ~\$0.8¢/W) or the					
Relative domest maturity	ic market	Low	Chir • Sinc is of mar • Glol	 Highly concentrated market with 10 players producing 96% of global polysilicon; U.S. has 3 players with ~5% glochina has over 7 major players producing ~80% of the global capacity Since Chinese duties were placed on U.S. polysilicon in 2014, U.S. plants are operating significantly under capa is operational) because most of the polysilicon produced in the U.S. needs to be exported to China as U.S. has a manufacturing capacity Global polysilicon production is expected to almost double by 2023 with most of the new capacity based in China plants are located in Sichuan and Inner Mongolia to avoid forced labor bans for Xinjiang production from U.S. a 				capacity has no c China;	pacity (~25% of capacity s no domestic wafer hina; new polysilicon			
Regulatory envir existing infrastru		High										least 40% of total nestic polysilicon
Overall ranking						. .	rated (~80%) and con capacity to sa					(~5%) can leverage ain integration

1. Renewable Energy Corporation (REC) Silicon 2. Subsidiary of Golden Concord Group Limited (GCL)

OEM | Rapid operationalization of manufacturing capacity at scale a key U.S. challenge to building an integrated domestic supply chain

Areas for Competitive Advantage	Ranking	Summary analysis	😭 🛛 = Key dimension
Raw material availability	Low	 U.S. has 3 players with ~5% global capacity whereas China has over 7 major players produce Since Chinese duties were placed on U.S. polysilicon in 2014, U.S. plants are operating signs operational) because most of polysilicon needs to be exported to China as U.S. has no construction of the polysilicon manufacturing is expected to almost double by 2023 with most of the new capare located in Sichuan and Inner Mongolia to avoid forced labor bans for Xinjiang product 	gnificantly under capacity (~25% of capacity domestic wafer manufacturing capacity bacity based in China; new polysilicon plants
Intellectual Property & innovation	Low	 Patenting activity within OEM has decreased since 2016 by ~10-15%, possibly indicating m China dominates OEM patenting activity with South Korea in 2nd place and the U.S. in 4th In the U.S., SunPower, Tesla, and Rocket Labs lead the patenting activity U.S. needs to accelerate innovation within OEM to recapture any lead in the segment via 	place
Research & technical leadership	High	 While China leads the research volume, U.S. (in 2nd place) produces higher quality resear Research activity is led by Chinese universities with U.S. DOE in 2nd place, while Indian ar U.S. can use FirstSolar's leadership in thin-film technology and global manufacturing capa Vietnam, Malaysia, and India, to further R&D and scale manufacturing of thin-film module 	nd Swiss universities feature in top 10 acity (~20GW by 2025) with plants in U.S.,
Low operational costs	Low	 With high labor (~25% of total cost) and energy (~10% of total cost) costs, U.S. is cost disa U.S. and EU manufacturing labor is significantly costlier than other markets (~\$50 U.S. electricity prices are lower than in EU and Japan but more expensive than C U.S. will take at least few years to scale up and reach similar economies of scale cost berefore.)/hr in the U.S. & EU vs ~\$10/hr in China) hina
Demand / supply side policy	High	 Recently announced IRA policy will help lower U.S. module delivered price compared to S choose between the 45X advanced manufacturing tax credit for wafers (5¢/W), cells (4¢/ energy project credit of 30% of investment cost 	
Relative domestic market maturity	Low	 Currently, with no wafer & cell capacity and limited module capacity (~5%), U.S. OEM is ineeded to compete on cost with China which has invested >\$50B in solar manufacturing t As the 2nd largest market for solar panels through 2050, U.S. demand for panels will only 	o reach high economy of scale benefits
Regulatory environment & existing infrastructure	High	• U.S. OEM production is further incentivized by the IRA ITC domestic content bonus of 10% attributable to domestic U.S. manufacturing, thereby making module manufacturers wan	
Overall ranking		With <2% OEM manufacturing capacity, loss of IP lead, and high operational costs, the U.S. doe OEM today, but the recent IRA incentives provides the U.S. an opportunity to recapture comperapidly scale manufacturing to gain economies of scale cost benefits	

Project Development | U.S. well-positioned to continue winning development in domestic market with some potential for exports

Areas for Competitive Advantage	Ranking	Summary analysis = Key dimension
Raw material availability	High	 Abundant availability of land (entire U.S. could be powered by solar occupying ~0.6% of U.S. land mass) and strong, consistent solar radiation (sunlight) makes U.S. well-positioned to deploy solar at scale with the market expected to grow >1000% from ~130GW today to ~1500GW by 2050 (2nd largest globally)
Intellectual Property & innovation	N/A	Project developer competitive advantage is not driven by patents
Research & technical leadership	High	 Experience of some of the world's largest developers such as NextEra, with 28GW of operational renewable energy capacity, can be utilized to expand development efforts into fast-growing markets abroad With ~5% share of the export market, some U.S. developers have expanded operations internationally; like some European developers such as EDF and Enel, U.S. developers have the potential to capture a bigger export share as they possess strong technical knowhow, local knowledge, and strong relationships with OEMs
Low operational costs	Low	 U.S. average wages significantly higher than any other region with average income per month ~\$6K while the EU's is ~\$4K, Japan's & South Korea's are ~\$3K, China's & Russia's are ~\$1K, and India's is ~\$200
Demand / supply side policy	High	 IRA tax credits brings down cost for developers incentivizing further deployment of solar; developers can choose between various incentives: investment tax credit of up to 70% (includes 40% various types of bonuses) or production tax credit of 1.5¢/kWh with added bonuses if eligible
Relative domestic market maturity	High	 With the 2nd largest deployed solar capacity in the world, the U.S. has experience in developing utility-scale solar projects with US project developers currently owning ~75% of the domestic market
Regulatory environment & existing infrastructure	High	 Even though some states such as California are adopting permitting reforms and clean energy targets, there is lack of federal support in big permitting reform or clean energy targets apart from limited IRA / IIJA subsidies that will expire by 2032
Overall ranking		U.S. has high competitive advantage potential today, with significant growth in domestic project development, robust government support, and potential export opportunities for several large players

While recent legislation has addressed many priority issues for solar, additional policy could further boost U.S. competitiveness and accelerate deployment

	Priority issues for solar	Changes from recent legislation (IRA, IIJA, CHIPS, and EA 2020)	Remaining areas to target with future policies
Polysilicon production	Uncertainty in demand for domestic polysilicon and high production costs	 Advanced manufacturing production credits for polysilicon (\$3/kg) 	 Facilitate polysilicon export to international wafer manufacturers and provide low-cost electricity to domestic polysilicon plants
	Bottlenecks in setting up domestic manufacturing base (e.g., equipment costs)		Re-assess section 301 tariffs and stringent certifications for PV manufacturing equipment, and provide low-cost land
Wafer, cell, and module manufacturing	U.S. operational cost disadvantage due to high labor and manufacturing costs	 Advanced manufacturing production credits for wafer (\$12/m²), cell (4¢/W), and modules (7¢/W) 	De-risk investment to build integrated wafer, cell, and module manufacturing facilities and fund research into manufacturing automation to achieve scale
	Lack of solar-trained skilled workforce (engineers, scientists) for manufacturing facilities		 Fund and establish solar-focused science and engineering training programs, while maintaining a supportive immigration policy
	Long interconnection queues and unclear cost-allocation for required grid infrastructure upgrades		Reform interconnection processes and enable collaboration between governments, transmission providers, and developers
Deployment		 Extended ITC and PTC credits for electricity producing clean energy facilities until 2032 	
1 Antidump	ing and Countervailing Duties 2. Hyghur Forced Labor	Drevention Act	Priority areas 53

Deep dive | Detailed list of potential solar policy actions to support U.S. competitiveness (I/II)

Policy-based Investment-based Key interventions (☆) Demand side Supply side Streamline domestic permitting, review, and approval timelines for solar projects 5 Establish solar-focused apprenticeship and technical programs in collaboration with manufacturers, governments, and educational institutions to create a diverse talent pipeline while maintaining a supportive immigration policy for high-skilled labor Technology-wide Create and fund research partnerships between local and foreign academic institutions, government agencies, and private sector to further innovation in solar cell technology Initiate bilateral and multilateral diplomacy and dialogue with friendly countries to expand solar manufacturing capacity across the globe to develop a diversified and resilient supply chain Facilitate partnerships with Provide electricity at lower prices to energy-intensive polysilicon friendly countries with existing or manufacturing facilities to make U.S. polysilicon more cost-competitive future wafer manufacturing Localizing other materials such as solar glass, inverters, frames, and $\langle \gamma \rangle$ facilities to export domestically polymers will help reduce overall domestic deployment cost Raw materials & inputs produced polysilicon • Invest in recycling technology to recycle minerals from solar panels such as silicon, silver, copper etc. to build a circular supply chain Friend-shore critical raw materials such as copper, which is expected to have supply shortages by 2030

Deep dive | Detailed list of potential solar policy actions to support U.S. competitiveness (II/II)

		Policy-based Investment-based 🐼 Key interventions
	Demand side	Supply side
OEM	 Enable a minimum module demand guarantee by establishing a consortium of developers Require higher domestic content provisions for federal solar PV projects to support the domestic manufacturing industry 	Increase incentives for building domestic wafer manufacturing facilities to
Project Development		 Streamline permitting process for domestic solar projects to reduce delays in deployment Expand and upgrade transmission grid, improve transmission planning, and reform interconnection processes to reduce delays Ensure tariff policies (e.g., AD/CVD¹ and UFLPA²) do not lead to acute module shortages, which will cause further delays in near-term domestic solar deployment Establish and implement traceability standards to improve global supply chain mapping capabilities to reduce further supply chain bottlenecks due to regulations (e.g., UFLPA²)

1. Antidumping and Countervailing Duties 2. Uyghur Forced Labor Prevention Act

Overview of key assumptions

Assumption	Value	Impact on Calculations	Source
Projections of solar capacity	Varies by year, market, and scenario	Solar capacity is forecasted using the IEA 2022 WEO data for APS and STEPS scenario and using IEA 2021 WEO data for SDS/NZE scenarios. These capacity predictions form the basis of all other calculations.	IEA 2022 and 2021 World Energy Outlook, BCG Analysis
Split of capacity projections by type of installation	Varies by year	Capacity projections calculated above are split using Wood Mackenzie's report and are assumed to be constant post 2026. Residential is <20kW, C&I is >20kW but <5MW, Utility-scale is >5MW. The global split is used for all regions/countries, which may cause conservative or optimistic outlook for certain countries or regions.	Wood Mackenzie Solar Outlook Q2 - 2021, BCG analysis
Cost projections	Varies by year, type of installation, and scenario	Cost projections are calculated using Wood Mackenzie's report from 2020 to 2027, with projections from 2027 to 2050 being calculated using NREL's ATB report. Cost projections are split by value chain segments, which help calculate market size per value chain segment.	2022 NREL Annual Technology Baseline, Wood Mackenzie's H1 2022 US Solar PV System Pricing report, BCG analysis
U.S. SAM	Varies by year, value chain, and scenario	The addressable market is used to calculate the obtainable market (SOM). The solar U.S. SAM includes countries where the U.S. has a realistic opportunity to expand into given economic and political barriers.	Expert input & BCG analysis
U.S. SOM	Varies by year, value chain and scenario	SOM calculations are an average of the lower and upper bound SOM, which are calculated using various assumptions and proxies. SOM calculations have an impact on job numbers and job growth and inform what the opportunity is in the U.S. and abroad.	Expert input & BCG analysis

Offshore Wind

Offshore Wind | Definition of each segment across value chain

1. WEA = wind energy area

Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations & Maintenance	Offtake	Support Services
 Steel (up to ~80%) 	 Wind farm components include: Turbine components - tower, blades, generator, gearbox, hub, etc. Offshore foundations - differ by floating/fixed Electrical infrastructure - onshore & offshore substations, array & export cables, gen-tie cable 	 Wind developers drive projects through: Winning BOEM designated WEA lease¹ Site assessment plan Environmental impact studies Raising capital Interconnection studies Offtake auction bid and PPA signing Construction and operations plan Repowering: Old turbines are replaced with larger models Requires full project devt. from sourcing raw materials to O&M Lease and electrical BOP can be re-used 	 Full financing capital stack required for projects, including: Equity investing Debt financing Tax equity partnerships Govt. support Production and investment tax credits provide incentives for manufacturers and developers	 Engineering & Procurement: Supply chain management Transportation logistics of moving large components (100m+ blades) in one piece Construction: Leveraging specialized construction vessels Building tower foundation (if fixed) Installing the wind turbine (turbines often constructed onshore) 	Proximity to shore determines whether O&M base of operations is onshore or offshore Operations: • Administration - performance monitoring, electricity sales • Logistics - moving people & equipment Corrective and preventative maintenance: • Turbine and foundation maintenance • Transmission network and cable repairs & inspections Automated condition monitoring and software solutions	 Power produced directly injected into bulk transmission through gen-tie: Using negotiated PPAs with utility partners and other off-takers High-voltage cables needed to deliver power from coast Potential to move to backbone transmission lines and mesh grids to address single-source transmission challenges 	 Decommissioning: Assuming avg. lifespan of ~20 years, decommissioning is unlikely to be relevant until 2040 and beyond

Offshore Wind | U.S. has an opportunity to capture the regional market, with a focus on OEM, EPC, and O&M

						High Medium	Low
Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations & Maintenance	Offtake	Support Services
APS Global market <i>(cumulative U.S. SAM 2020 - 2050, \$B)</i>							
\$110 - 120B	\$230 - 250B	\$210 - 230B	\$80 - 90B	\$90 - 100B	\$160 - 180B	N/A	\$10 - 20B
Competitive Advant	tage						
Most raw materials accessible globally but government subsidies for domestic steel might drive advantage in the commoditized market	National support for R&D within floating platforms, weather- resistant materials, and superconducting generators, unlocks differentiated technologies and is a key driver of advantage Building domestic supply chains through partnerships with experienced EU players avoids high transport costs and creates opportunity	Fewer regulatory barriers and streamlined permitting can shorten project timelines and reduce risk, providing opportunity Ability to leverage both a diverse skillset and highly local expertise (such as ISO/RTO knowledge) to execute projects without delays drives advantage	Improved offshore market maturity, sufficient pipelines, and government subsidies targeting offshore wind lower cost of financing and drive competitive edge	Requires special port infrastructure and regulation-compliant crane and cable- laying vessels with protectionist policies defending domestic advantage Potential crossover with oil & gas for constructing subsea structures and floating foundations benefits markets with strong IOC presence ¹	delivering best-in-	Offtake is highly local, either to regional utility markets or isolated microgrids, with limited potential for competitive advantage Adjacent storage options (LDES, offshore-wind-to-H ₂) provide additional uses for wind power and drive advantage	Windfarm lifespans are likely 20+ years, with limited near-term need for decommissioning services given low deployed capacity

Copyright \odot 2022 by Boston Consulting Group. All rights reserved.

Low

Operations/ Maintenance Support Services Project materials & Offtake Financing EPC levelopment

> High Medium

N/A

Offshore Wind | OEM

DESCRIPTION OF TECHNOLOGY

GLOBAL PLAYERS - COUNTRIES

Includes the manufacturing of turbine components (e.g., tower, blades, generator, hub, gearbox) and foundations (monopiles, jackets, nascent floating foundations). Tier 1 vertically integrated companies (such as Siemens Gamesa and Vestas) produce most large components in-house and source the high-precision elements (gearbox, inverter system, brakers, yaw controllers) from specialized tier 2 and 3 suppliers.

	MARKET DYNAM	ICS			
\$230 - 250B		2020	2030	2040	2050
Cumulative	SAM (\$B, APS)	-	~\$9	~\$16	~\$6
APS U.S. SAM (\$B, '20-50)	Incremental capacity (GW)	-	30-35	55-60	25-30
	Avg. margin (%)	10 - 20%			

COMPANIES

Vestas Swinergy BOSCH Manufacturing locations not highlighted PRYSMIAN Turbine manufacturer headquarters nkt cables Component manufacturer headquarters Mito-Teknik

Component Turbine manufacturers manufacturers **SIEMENS** Gamesa Vestas **SIEMENS** Gamesa ABB GOLDWIN **SKF** Mexans DEC 东方电气 LM WIND MINGYANG WIND POWER VEM 明的风险 bachmann

VALUE PROPOSITION

Ability to develop advanced local manufacturing capabilities through joint partnerships with EU players shifts production of large components domestically and decreases high transport costs. Additionally, accelerating R&D into differentiated technologies, such as deploying cost-effective, commercial-scale floating technology, provides IP export potential in the future.

COMPETITIVE ADVANTAGE Government financial support, through advanced manufacturing credits and R&D credits, incentivizes **Demand / supply** building new facilities to support wind supply chains at a side policy globally competitive scale. National support for R&D that unlocks differentiated technologies is key to driving competitive advantage. This includes developing superconducting generators, creating weather-resistant protections for blades and towers, re-designing turbines to reduce weight and materials cost, and deploying floating foundations to Intellectual capture technical potential in deep waters. Players with Property & innovation ambitious climate goals, floating pilot projects, and oil & gas capabilities (due to synergies in anchoring floating structures) are especially well-positioned to take lead on floating technology, with IP export potential in the future since there are no clearly established floating players yet. OEM market today is dominated by EU players Siemens Gamesa and Vestas who control 70% of installed offshore Relative domestic market maturity

turbines, with plans to expand internationally. Building supply chains domestically, through joint ventures with established EU players, creates local jobs and value and has a potential to shift research centers domestically.

Offshore wind

Project Development Financing Operations/) Offtake Support Services OEM materials &

> Medium Low

N/A

Offshore Wind | EPC

DESCRIPTION OF TECHNOLOGY

Pre-construction EPC includes supply chain management, marine management services as well as the transportation logistics of moving large components in one piece. Final on-site construction typically requires heavy-lift port capabilities, crane-equipped installation vessels, and diving assets to set the cables, build foundations, and assemble turbines.

	MARKET DYNAM	ICS			
\$90 - 100B		2020	2030	2040	2050
Cumulative	SAM (\$B, APS)	-	~\$3	~\$6	~\$2
APS U.S. SAM (\$B, '20-50)	Incremental capacity (GW)	-	30-35	55-60	25-30
	Avg. margin (%)	5 - 10%			

GLOBAL PLAYERS - COUNTRIES COMPANIES Netherlands Norway EPC & Transport H GREAT LAKES DREDGE & DOCK subsea7 COMPANY, LLC **FUGRO** 🔮 DEME seaway⁷ Van Oord 🗾 Jan De Nul 山 Boskalis K Fred. Olsen Windcarrier mpi GeoSea EPC players' headquarters

VALUE PROPOSITION

Project developers with construction capabilities typically own the high-level engineering and procurement process and hire out individual tasks to specialized EPC contractors. Ability to upgrade port structures, build required equipment, and deliver on the diverse EPC needs of developers drives advantage.

High

COMPETITIVE ADVANTAGE

Regulatory environment & existing infrastructure	Government support towards port infrastructure upgrades and construction of regulation-compliant, heavy-lift vessels accelerates offshore wind efforts. While country-specific regulations can protect domestic interests, they also contribute to bottlenecks and delays as windfarm timelines are tied to the timely construction of needed installation equipment.	
Research & technical leadership	Strategic partnerships between diverse engineering companies to deliver the full range of EPC capabilities, from site engineering to specific construction services, is a key driver of advantage. Well-established oil & gas markets can benefit from contracting construction of foundations and subsea structures to oil & gas companies.	
Relative domestic maturity	Well-developed port infrastructure as well as access to various installation vessels with cable-laying, heavy-lift and crane capabilities is key to the successful completion of OSW projects. There is some export opportunity in re-using installation vessels in neighboring countries where demand is not significant enough to justify constructing domestic vessels; however, installation vessel transport costs are very high.	

Medium

Low

N/A

Offshore Wind | Operations & Maintenance

DESCRIPTION OF TECHNOLOGY

OEM suppliers typically protect their O&M services during the warranty period (~5 years); afterwards, O&M tends to be performed by the developer. Operations include back-office administration, performance monitoring, and people and equipment transport logistics. Maintenance - for turbines, cables, and foundations - is both preventative and corrective.

	MARKET DYNAMI	CS			
\$160 - 180B		2020	2030	2040	2050
Cumulative	TAM (\$B, APS)	~\$0	~\$3	~\$9	~\$11
APS U.S. SAM (\$T, '20-50)	Cumulative global capacity (GW)	30-35	290-300	800-820	1,000-1,100
	Avg. margin (%)	10 - 15%			

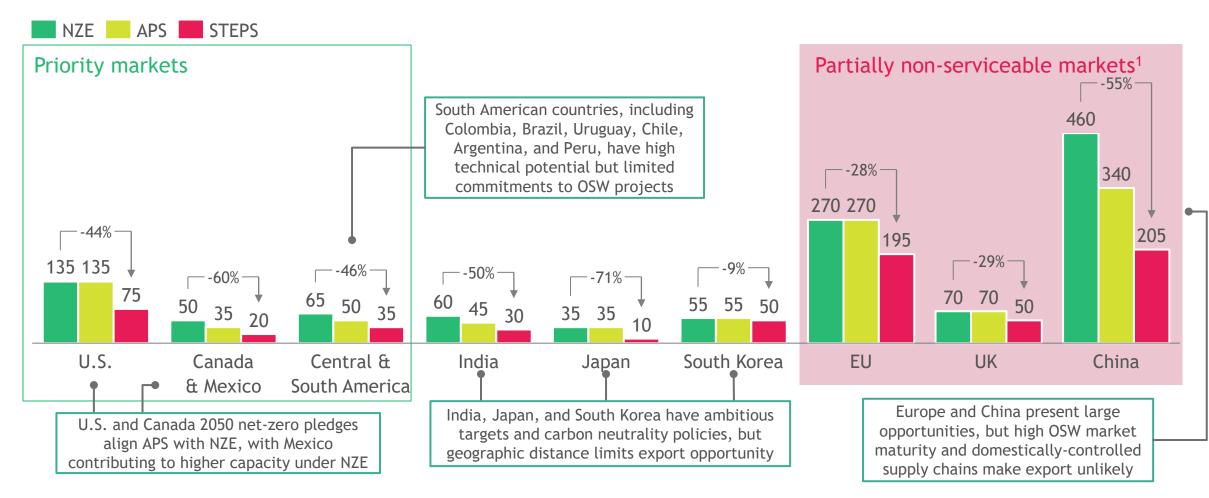
GLOBAL PLAYERS - COUNTRIES
COMPANIES

Mix of OEM and PD players

Orsted
Orsted

VALUE PROPOSITION

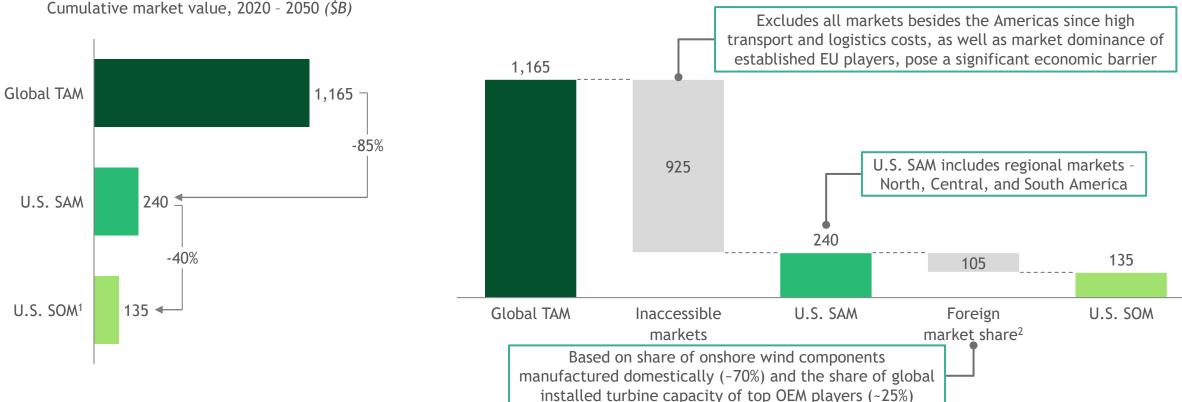
Winning O&M solutions are innovative and flexible, prioritize safety, and reduce costs. Best-in-class global operations with a focus on optimizing workforce trainings and time-in-transit, as well as innovation in automating O&M practices through sensors and drone inspections, drives long-term cost reductions.


High

COMPETITIVE ADVANTAGE

	ANTAGE	
Research & technical leadership	Access to skilled, regional labor, with an opportunity to easily train additional technicians, is crucial for successful O&M. Oil & gas players have an established scale advantage and can leverage existing O&M experience to deliver subsea and platform maintenance. Some export potential lies in sending a domestic workforce to foreign countries to train local workers on O&M skills during first years of operation.	F
Intellectual Property & innovation	Innovation in automation through using remotely operated vessels and drones for preventative maintenance and implementing automated condition monitoring (i.e., vibration and temperature sensors with advanced computing systems) presents a significant opportunity to streamline maintenance and reduce long- term labor costs. Research into turbine decoupling to solve O&M challenges of mobile floating turbines can drive competitive advantage.	Н
Regulatory environment & existing infrastructure	As projects are built further from shore, increasing transit distances will require safe and cost-effective transport strategies outside of workboats. This might include helicopter support and offshore-based working to minimize workers' time in transit, with significant crossover of safety standards and offshore-based operations with oil & gas.	N

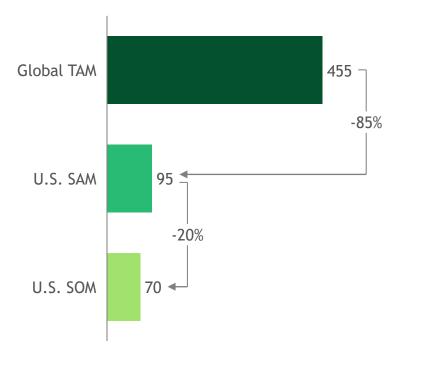
U.S. regional markets (i.e., the Americas) present largest opportunity given geographical distance is a significant barrier

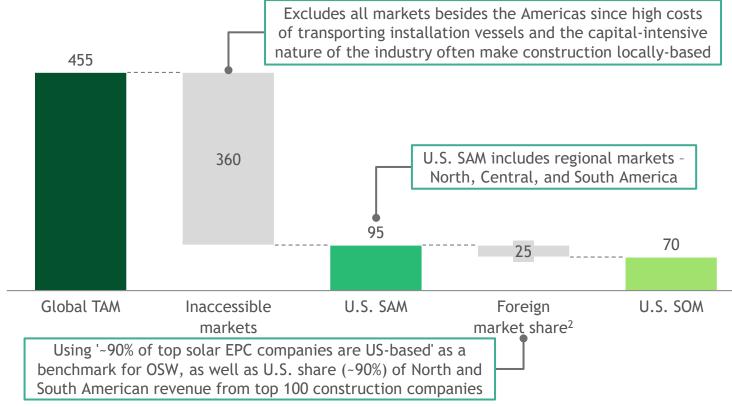

Installed offshore wind capacity through 2050 by market and scenario (GW)

1. Markets where part or all of the value chain would be unserviceable by US companies due to protectionist policies, prohibitive costs, or other reasons. EU and UK excludes Financing. 63 Source: IEA World Energy Outlook 2022, IEA Offshore Wind Report 2019, BCG Analysis

OEM | U.S. expected to own a high share of regional markets given significant economies of scale, with U.S. SOM of ~\$100-165B

Walk from TAM to SOM¹ under APS scenario

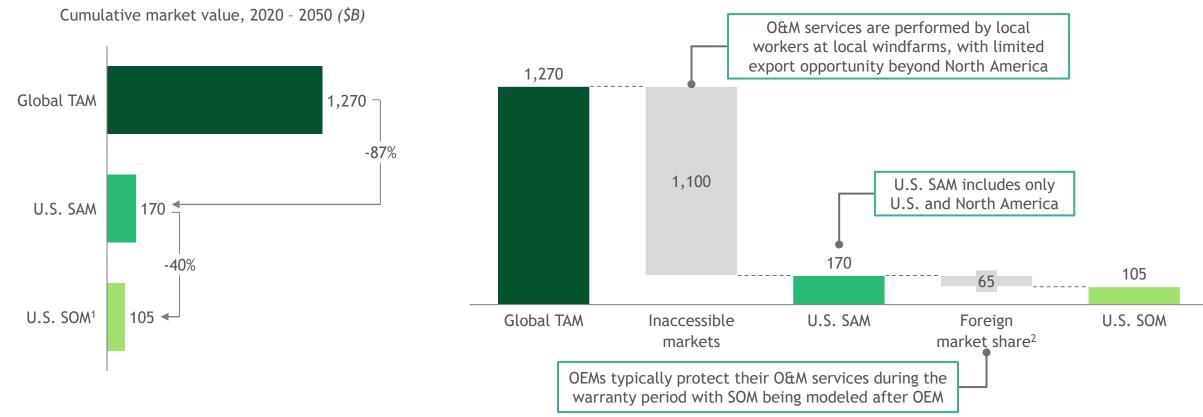



APS market sizing metrics

1. Average of lower and upper bounds. 2. LB: 60% of U.S. (onshore wind components manufactured domestically) + 5% of export SAM (share of non-Chinese turbine capacity by U.S. OEM); UB: 80% of U.S (add 20% to LB for domestically-manufactured foundations) + 45% of export SAM (share of non-Chinese turbine capacity by top 2 players). Source: IEA, DOE, BCG analysis

EPC | U.S. projected to own a high share of both domestic and regional construction market, leading to U.S. SOM of ~\$60-85B

Walk from TAM to SOM¹ under APS scenario

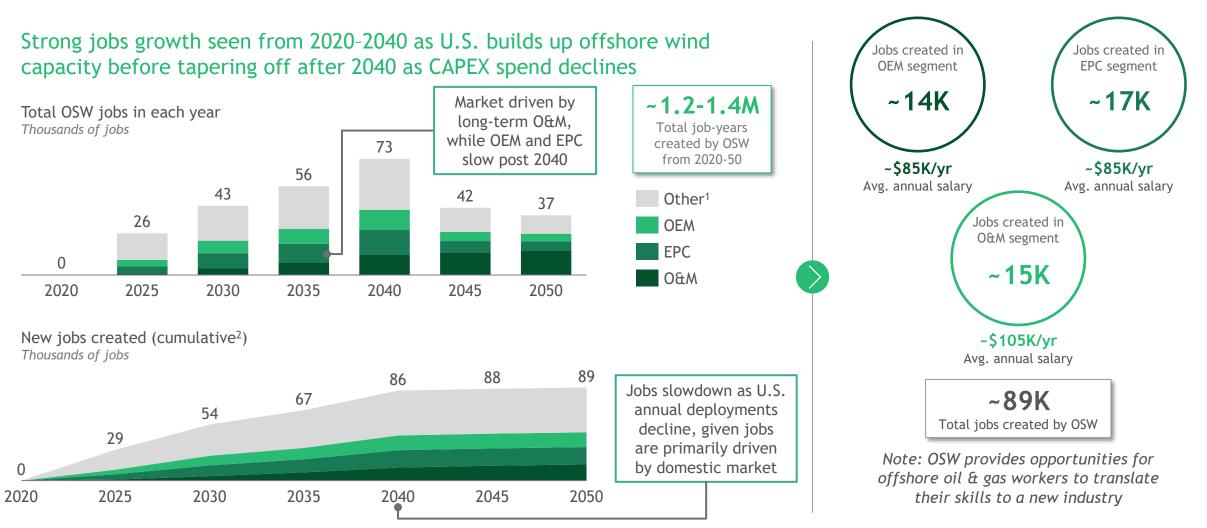


1. Average of lower and upper bounds. 2. LB: 90% of U.S. (9 out of top 10 EPC companies in 2019 are U.S.-based as a proxy for OSW) + 10% of export SAM (international sales as 10% of total sales for US firms within top 30 global construction companies); UB: 90% of total SAM (U.S. share of North and South American revenue from top 100 construction companies). Source: IEA, BCG analysis, Deloitte Global Powers of Construction 2021 report

Cumulative market value, 2020 - 2050 (\$B)

APS market sizing metrics

O&M | U.S. exports limited to regional markets given the highly local nature of O&M services, with U.S. SOM of \sim \$85-125B



APS market sizing metrics

Walk from TAM to SOM¹ under APS scenario

1. Average of lower and upper bounds. 2. LB: 60% of U.S. + 5% of export SAM; UB: 80% of U.S. + 45% of export SAM given OEMs often protect O&M services during the warranty period with SOM percentages being the same for O&M and OEM. Source: IEA, DOE, BCG analysis 66

~90K jobs expected to be created by 2050 with OEM, EPC, and O&M driving ~50% of total jobs created

1. 65% of 'other' category driven by project development; however, PD was deprioritized since it is highly dependent on regulatory environment with limited opportunity to drive advantage. 2. In APS scenario; incremental new jobs calculated as the sum of all non-negative one-year differences in # job-years (e.g., 2021 job-years minus 2020 job-years gives 2021 new jobs); incremental new jobs added to sum from prior period for cumulative calculation; Source: IEA, BCG analysis

OEM | Limited manufacturing capabilities and gap to China in innovation and research only partially offset by highly favorable policy

😭 🛛 = Key dimension

	Areas for Competitive Advantage Ranking		Summary analysis			
	Raw material availability	High	• Raw materials required for turbines are mostly global commodities (e.g., steel, concrete, carbon fiber composites, polymers), except for rare-earth magnets that have been monopolized by China			
	Intellectual Property & Low		 China is the clear OEM patenting leader, with 2x as many patents as South Korea in 2nd place; the U.S. is in 5th place SGRE, GE, and Vestas are top 3 players in total patenting activity Patenting activity in floating has grown rapidly at 15% CAGR since 2016; currently, the U.S. is in 5th place for floating patents and should accelerate development of floating tech before emerging players do 			
$\langle \rangle$	Research & technical leadership	Low	 China leads the research volume; the U.S. is in second place with 50% fewer publications but higher quality research Global research into floating platforms has grown at 30% since 2016; 35% of this research is driven by China and 12% by U.S. Research into blade design and materials has also grown rapidly with a CAGR of 33%, led by China and the UK 			
	Low operational costs	Low	 U.S. and E.U. manufacturing labor at ~\$50/hr is 2-5x more expensive than other markets (~\$10/hr in China & Brazil and ~\$25/hr in Japan & South Korea), with similar rankings but less extreme differences in labor costs for R&D and engineering roles U.S. electricity prices are lower than in the E.U. and Japan but more expensive than in China and India 			
	Demand / supply side policy High		 Manufacturers can leverage the 45X Advanced Manufacturing Production Credit for components of \$20-50/kW Additionally, the U.S. DOE has pledged nearly \$50M into floating RD&D with a goal to reduce costs of floating wind by 70% and me 15 GW of floating by 2035 			
	Relative domestic market maturity	Low	 Majority of U.S. OEM facilities are still in early-stage development and are being built by E.U. developers on the East Coast. Currently, only cable and offshore substation facilities are operational, though there are plans for facilities for blades, towers, nacelles, and monopiles. U.S. supply chain is underdeveloped compared to E.U.'s and China's domestic manufacturing base OEMs are the second largest investment category. The Chinese and U.S. markets are in earlier stage development and are more fragmented than European markets, with funding spread across more players 			
	Regulatory environment & existing infrastructure	High	Bonus 10% ITC is given to manufacturers who meet 20% domestic content requirements for any manufactured products. The requirement is set to increase to 55% after 2027 and supports domestic manufacturing jobs long-term			
	Overall ranking	Low	Limited number of dedicated U.S. OEMs and a gap to the leader in innovation and research is only partially offset by favorable policies; offshore wind has low competitive advantage but an opportunity to pursue floating tech and create IP export potential			

- Koy dimension

 \sim

EPC | Construction equipment supply chain bottlenecks and high construction costs are a key challenge within EPC

Areas for Competitive Advantage	Ranking	Summary analysis	
Raw material availability	N/A	Construction materials (e.g., cement, steel) are widely available	
Intellectual Property & innovation	Low	 China dominates EPC patenting activity, with 3x as many patents as South Korea in 2nd place; U.S. is in 7th place with E.U. players Patenting activity within EPC has increased since 2016, driven by China with 40% of EPC patenting compared to the U.S. with 4% Patenting in EPC is driven by innovation in towing / construction methods and designing crane-equipped vessels 	
Research & technical leadership	Low	 The U.S. is in third place behind China and the U.K. by EPC research quantity, though it leads with research quality with ~2x as many citations per publication than China Global research into construction vessels only accounts for 4% of global publications but has accelerated at 34% CAGR since 2016 Europe particularly prioritizes research into construction vessels with U.K., Germany, and Norway overcoming the U.S. 	
Low operational costs	Low	 U.S. labor costs are comparable to E.U. costs but ~2-5x higher than in major OSW construction regions in South & East Asia It costs ~\$450¹ and takes 3 years to build a WTIV² in the US, compared to ~\$330M and 2 years to construct a WTIV in Asia 	
Demand / supply side policy	High	 U.S. installation vessel manufacturers can utilize a credit equal to 10% of the sales price of the vessel which accelerates domestic vessel deployment; additionally, the Port Infrastructure Development Program under IIJA provides \$600M to support supply chain resilience and development of OSW support infrastructure 	
Relative domestic market maturity	Low	 Vessel shortages pose a high risk to meeting the 30 GW target given required demand exceeds existing and projected supply of vessels in the U.S. At least 5 installation vessels are required to meet the 2030 target with currently only one vessel under construction; shortage of cable lay, scour protection, and heavy lift vessels pose additional risks However, the U.S. is highly competitive in engineering services and subsea construction given crossover with offshore oil & gas 	
Regulatory environment & existing infrastructure	High	 The U.S. has a strong regulatory ecosystem that protects domestic interests within EPC, including the Jones Act that requires maintenance and installation vessels to be built within the U.S. and operated by U.S. citizens While this creates a supply chain bottleneck in the short-term, the Jones Act guarantees long-term domestic job creation 	
Overall ranking	Low	Supply chain bottlenecks around building Jones Act-compliant construction equipment and a gap to China in research and patenting make the U.S. less competitive within EPC. However, significant policy incentives can help offset the high costs of installation equipment and protect domestic EPC services in the long-term	

1. After applying the 10% IRA tax credit 2. Wind turbine installation vessel

Source: BCG Analysis, Offshore Wind Report 2022 (DOE), The Demand for a Domestic Offshore Wind Energy Supply Chain (NREL), Offshore Wind Outlook (IEA)

Copyright \odot 2022 by Boston Consulting Group. All rights reserved

O&M | U.S. well-positioned to decrease long-term O&M costs by automating maintenance and transferring oil & gas skills and equipment to OSW

	Areas for Competitive Advantage	Ranking	Summary analysis = Key dimension	
	Raw material availability	N/A	• Construction materials (e.g., cement, steel) are widely available; raw materials for operations not applicable	
	Intellectual Property & innovation	Low	 China is a clear patenting leader in O&M with a more fragmented patenting portfolio; U.S. is in 5th place The small category of observation and maintenance using drones and UAVs¹ has seen particularly high growth (28% CAGR sinc 2016). South Korea owns 40% of this patenting activity, followed by China and the U.S. at 10% 	
	Research & technical leadership	High	 China leads the research volume in turbine O&M the U.S. is in second place with 50% fewer papers but higher quality research Publications around UAVs and drones only account for 2% of total papers but have grown by 36% since 2016; the U.S. is a resear leader at 20% of UAVs / drones publications with slightly lower research quality than China in 2nd place 	
	Low operational costs	Low	 Overall labor costs for OSW are comparable to labor costs in Europe with strict labor policies and safety standards given the high risks of working at sea; O&M skills and labor are transferable from offshore oil & gas where the U.S. has an advantage U.S. electricity prices are lower than in the E.U. and Japan but more expensive than in China and India 	
	Demand / supply side policy	N/A	Not applicable in segment	
	Relative domestic market maturity	High	 The challenge of procuring Jones Act-compliant service operation, survey, support and crew transfer vessels is much lower due the greater availability of these lower cost vessels and the ability to adapt existing offshore oil & gas vessels to offshore wind O&M companies receive the most private investment. Investments within ROVs² / drones are primarily made into players in the U.S. and the U.K., creating an opportunity for the U.S. to take a lead in automating O&M services Partnerships in offshore wind jumped 1.5x since 2020, pointing to an increased consolidation of the industry. Top players in the number of partnerships are large successful international developers and oil & gas companies (RWE, Ørsted, Equinor), who al tend to perform O&M services for windfarms. With the first U.S. player in 9th place (Dominion), the U.S. has an opportunity to increase partnerships and leverage the scale advantage created by accessing partners' resources and expertise 	
	Regulatory environment & existing infrastructure	High	 Jones Act restrictions also apply to maintenance vessels, which must be built domestically and be operated by U.S. crew Given higher availability of vessels, Jones Act creates an opportunity to own O&M domestically, rather than a bottleneck 	
	Overall ranking	High	The U.S. is highly competitive within O&M given significant research and private investment into automating O&M services the relatively high availability of equipment to be used for O&M, and the transferability of O&M skills and workers from offshore oil & gas	

1. Unmanned aerial vehicles, 2. Remotely operated vehicles

Source: BCG Analysis, Offshore Wind Report 2022 (DOE), The Demand for a Domestic Offshore Wind Energy Supply Chain (NREL), Offshore Wind Outlook (IEA)

While recent legislation has addressed many priority issues for OSW, additional policy could further boost U.S. competitiveness and accelerate deployment

	Pre-legislation priority issues	Changes from recent legislation (IRA, IIJA, CHIPS, and EA 2020)	Remaining areas to target with future policies
Permitting &	Risk burden placed on OSW developers given high upfront costs and no permitting certainty	• Extended ITC and PTC credits for electricity producing facilities until 2032 increase long-term revenue streams	• De-risk development through increased permitting certainty and direct revenues from lease auctions back into projects
development	Long and complex permitting processes with limited clarity on timelines		Reduce regulatory barriers across local, state, and federal levels, and streamline permitting and approval timelines
Design &	U.S. operational cost disadvantage given high labor and manufacturing costs	 45X PTC for OSW component production and 48C ITC for manufacturing facility investments 	 Secure supply of high-risk components through research into manufacturing automation and modularity to achieve scale
manufacturing	Gap to leader in innovation for novel technologies	 >\$3B in funding under CHIPS and IIJA to clean tech demonstration projects 	Prioritize demonstration and commercialization activities for floating
Construction	Support infrastructure, including ports and vessels, largely undeveloped	 ~\$600M for port infrastructure upgrades 10% of sales price tax credit for WTIVs 	Standardize dimensions to create shared infrastructure and support novel construction methods that decrease WTIV needs
Offtake	Generator lead line approach places cost burden on individual developers and increases pressure on onshore grid interconnections	 ~\$100M in interregional transmission analysis and planning 	Plan and build an interstate high-voltage transmission solution for offshore windfarms
			Priority areas 71

Deep dive | Detailed list of potential OSW policy actions to support U.S. competitiveness (I/II)

Policy-based Investment-based 🔂 Key interventions

	Demand side	Supply side
Technology- wide	 Encourage state legislatures to codify offshore wind targets and create procurement schedules to establish business certainty that incentivizes local supply chain development Create legislation that allows BOEM to decide where to direct revenues from federal lease sales to help fund public interests (i.e., transmission planning, supply chain building, fisheries mitigation, environmental protection) 	 Convene relevant stakeholders from FERC, DOE, BOEM, RTOs / ISOs and other federal agencies Fund research into planned offshore wind transmission solutions, such as mesh and backbone designs

Deep dive | Detailed list of potential OSW policy actions to support U.S. competitiveness (II/II)

			Policy-based Investment-based 😭 Key interventions
	Demand side	Supply side	
OEM	• Facilitate partnerships with neighboring markets to export floating technology IP and components	 of high-risk components, which includes black Allocate DOE funding to building a dedicated of floating technology Build on existing initiatives (such as t technology through supporting increated of create opportunities to increase reserve) 	tion and modularity to increase production capacity and secure supply les, subsea cables, and base foundations marine energy demonstration center for testing and commercialization he DOE Offshore Wind Shot) to bring down the costs of floating sed deployments and industry-wide standardization arch collaboration among national labs, universities and private sector side of floating, including low-weight turbine designs, superconducting
EPC	• Continue efforts to connect LPO with ship builders to help finance construction of large WTIVs	 to ensure support infrastructure doesn't become Create a regulatory body within BOEM to over strategic port upgrades and optimize vessel 	ustry-wide standards on dimensions (e.g., component size and weight) ome obsolete before the end of useful life ersee infrastructure building and usage across projects to prioritize utilization rates given likely supply chain shortages tive vessels and construction methods that reduce WTIV requirements
O&M		maintenance to help reduce O&M costs	for condition monitoring and unmanned vehicles for preventative amework for using unmanned maritime and aerial vehicles in oceans

Overview of key assumptions

Assumption	Value	Impact on Calculations	Source
Projections of offshore wind capacity	Varies by year, market, and scenario	Offshore wind capacity is predicted by applying 2019 offshore-wind-per-country %'s to the IEA 2022 total wind projections. These capacity predictions form the basis of all other calculations; however, they can be slightly conservative since they might not fully reflect the increased interest of China and U.S. in OSW in the past 3 years.	IEA 2022/2019 World Energy Outlook & IEA 2019 Offshore Wind Outlook
Fixed vs. floating capacity projections	Varies by year and market	Once offshore wind capacity is calculated, it is divided into fixed and floating bottom capacity. These inputs help inform the market size modeling since CAPEX and OPEX differ by fixed vs. floating and tend to be higher for floating.	Expert input
Split of CAPEX by value chain	Varies by fixed vs. floating	The CAPEX %'s create a split per value chain from the total capital costs, which in turn informs segment prioritization. Since the NREL analysis is made for 8.0-MW turbines, expert input refined the %'s to match larger turbines used today.	2020 Cost of Wind Energy Review & Expert input
Operating expenses	Varies by year and by fixed vs. floating	OpEx is used to calculate the market size for O&M and has an impact on total market size numbers as well as value chain segment prioritization.	2022 NREL Annual Technology Baseline
U.S. SAM	Varies by value chain and is mostly limited to the Americas	The addressable market is used to calculate the obtainable market (SOM). The offshore wind SAM is conservative and only includes countries where the U.S. has a realistic opportunity to expand into given economic and political barriers.	Expert input & BCG analysis
U.S. SOM	Varies by value chain and domestic vs. export SAM	SOM calculations have an impact on jobs numbers and jobs growth and inform what the opportunity is in the U.S. and abroad.	Expert input & BCG analysis

CCUS

Backup

CCUS | Definition of each segment across value chain

	•		Captul	re only		•			
Raw materials & inputs	OEM	Project Development	Financing	EPC	Energy Inputs	Operations/ Maintenance	Transport	Storage & Utilization	Support Services
Natural resources used for initial plant & solvent / sorbent, including Liquid solvents (amines, alkali metals, alkaline earth metal hydroxides - often potassium or sodium hydroxide) Solid sorbents (MOFs, zeolites) Membrane and cryo- separators (e.g., chilled ammonia)	R&D, manufacturing & designing technology Solid sorbent & liquid solvent • Initial CAPEX • Ongoing OPEX for solvent replacement • R&D (incl. zeolites, MOF) Custom plant components • Air filters for pre-cleaning • Air separation unit (oxy) • Separation	Project origination & coordination Greenfield Permissions & contracting Permitting (incl. land, water usage, etc.) Secure financing Secure energy inputs Brownfield (similar but also including site evaluation to determine economic and technical foacibility)	 Financing capital stack for large-scale projects Financing from plant owner or project developer Additional debt / equity financing from existing capital providers in industry Government support, tax credits (e.g., 45Q), etc. 	Engineering, procurement & construction (typically outsourced) Site-specific engineering considerations • Greenfield vs brownfield • CO2 output stream • Pre- combustion, oxy-fuel combustion, post- combustion • Industry of CCUS user (power, O&G, industrial)	Energy inputs required for operation of CCUS facility Low carbon heat and energy inputs for desorption, compression, transport, storage • Sourcing of reliable, low carbon energy sources for heat and power • Buildout of renewables as needed	Ongoing OPEX, including operations, maintenance, sorbent / solvent regeneration Maintenance and replacement • Sorbent & solvent regeneration • Baseline operations • Asset monitoring • Maintenance & repairs	Logistics of compressed CO2 delivery Compression for transport Local transport logistics • Pipeline • Pumps • Ships • Other transport mechanisms	Storage or end usage of CO2 Long-term storage • Saline aquifers • Depleted oil wells • Injection machinery End usage for CO2 gas (e.g., EOR, synfuels) • Final offtake contracting • Sales channels / markets	Differentiated offerings to monitor CO2 capture / emissions and expand offering to similar plants E.g.,: • Auditing / monitoring (for storage) • Technology licensing
Steel, cement, copper, etc.	columns Compressor Innovative / modular capture	feasibility)		Process mgmt. (incl. supply chain, contractor mgmt., system					76

testing)

components

CCUS | Significant opportunity exists across the value chain, with OEM, Project Development, and EPC prioritized due to market size & competitive advantage

Prioritized segm	nent for deep dive	i					Hi	gh Medium Lo	w N/A
Raw materials & inputs	ОЕМ	Project Development	Financing	EPC	Energy Inputs	Operations/ Maintenance	Transport	Storage & Utilization	Support Services
APS Global mark	ket (cumulative SA	M 2020 - 2050, \$E	})						
N/A	\$600 - 700B	\$100 - 200B	\$10 - 15B	\$80 - 120B	\$180 - 220B	\$100 - 150B	\$150 - 200B	\$50 - 100B	\$50 - 100B
Competitive adv	/antage								
Raw materials (e.g., amines, metal hydroxides) fairly accessible globally and unlikely to drive competitive advantage	Solvents have limited differentiation today but potential for R&D / IP to drive competitive advantage if OEM can reduce energy consumption, improve capture rate of solvent / sorbent, or develop modular plug-and-play systems to drive down costs	Economies of scale of hub model leads to advantage for developers able to originate & coordinate projects across the value chain via technical expertise, relationships with OEMs, access to CCUS hubs with storage, access to financing, and ability to secure permits, etc.	Markets with broad-based fiscal incentives for CCUS will drive R&D breakthroughs and first-of-a- kind projects but long-term financing expected to be distributed across many players once tech is de-risked	System quality and reliability at a premium for CCUS given potential risks to existing operating asset. EPCs with strong understanding of technology and customer needs (e.g., type of facility, CO2 storage, safety concerns) can establish competitive advantage	Energy is a major cost driver for CCUS. Requires access to affordable, low carbon energy sources (may require new builds) & technical expertise to reduce energy costs (electricity & heat) via plant & sorbent design (e.g., using waste heat)	Ability to maximize plant uptime is a critical KPI for O&M players, including solvent replacement and other repairs needed for steady operation of facility	Pipeline access and rights of way key for CO2 transport. Pipeline building for CO2 is a fairly mature industry so main advantage will be in receiving access to pipelines	Access to existing geological storage (e.g., saline aquifers, depleted oil reservoirs) and understanding of subsurface geology required although storage will remain local given costs of CO2 transport Access to offtakers (e.g., PTL) could drive market in future	Opportunities to develop low- cost, remote / digital techniques for emissions / leak monitoring

Note: OEM, Project dev't, Financing, EPC, Transport, Storage & Utilization, and solvent replacement (part of O&M) included in market size

Copyright \oslash 2022 by Boston Consulting Group. All rights reserved

Transport

Operations/ Maintenance

Energy Inputs

Storage & Utilization

Support Services

CCUS | OEM

DESCRIPTION OF TECHNOLOGY

Includes both the manufacture of chemical capture solvents / sorbents AND the additional equipment needed for the capture of CO2 from flue gas.

Sorbent / solvent OEM includes development of capture materials including chemical adsorbents (e.g., amines), membranes, MOFs, and many others

Plant design includes changes to improve heat regeneration and overall energy efficiency

	MARKET DYNAMICS						
\$600-700B		2020	2030	2040	2050		
Cumulative APS	US SAM (\$B, APS)	-	\$8 - 12	\$25 - 35	\$35 - 45		
US SAM (\$B, '20-50)	Annual global additions (Mtpa)	-	50 - 70	150 - 200	140 - 160		
	Avg. margin (%)	20 - 25%					

GLOBAL PLAYERS - COUNTRIES

COMPANIES

HQs of major OEMs

Air Liquide	PRODUCTS 2
	CO carbon clean
C-Capt	
	Svante

Group

VALUE PROPOSITION

Capture solvents / sorbents are produced by a wide range of OEMs today with no clear winner in the space. High costs and energy usage for current materials provide opportunities for players to create defendable, high value IP. Targeted R&D to create capture solvents with reduced energy / heat requirements for desorption and modular plug-and-play systems could drive a durable advantage

Project Development

Financing

EPC

COMPETITIVE ADVANTAGE

Raw materials 8 inputs

Raw material availability	Raw materials required for solvents / sorbents are currently global commodities although this may change with future innovations	L
Intellectual Property & innovation	Highly distributed market of OEMs currently with many focused on well-established chemical sorbents utilizing thermal desorption. Innovative technologies (e.g., MOFs, membranes) and modularization of technology could drive competitive advantage	Н
Research & technical leadership	Additional R&D necessary for cost declines needed to enable widespread CCUS adoption. Funding to support new technologies such as electro-swing adsorption could enable huge unlocks	Н
Demand / supply side policy	Limited market incentives for carbon capture slowing global deployment. Supportive policy could encourage further R&D and development of novel sorbents / solvents	M

Transport

Storage & Utilization Support Services

Operations/ Maintenance

Energy Inputs

CCUS | Project development

DESCRIPTION OF TECHNOLOGY

Includes a wide variety of activities around origination, development, and coordination of CCUS projects, including permissions & contracting (e.g., with EPC & operators), initial designing/engineering for facility, securing financing, ensuring access to low carbon energy, securing transport & storage for project, and potentially coordinating with other players involved in carbon hub development

	MARKET DYNAMICS						
\$100-200		2020	2030	2040	2050		
Cumulative APS	US SAM (\$B, APS)	-	\$3 - 5	\$5 - 7	\$5 - 7		
US SAM (\$B, '20-50)	Annual global additions (Mtpa)	-	50 - 70	150 - 200	140 - 160		
	Avg. margin (%)	15 - 20%					

COMPANIES

GLOBAL PLAYERS - COUNTRIES

- >10 projects under development or operational
- 2-10 projects under development or operational
- <2 projects under development or operational

Source: IEA, Global CCS Institute, BCG Analysis

IOCs / NOCs ExconMobil Jacatar Petroleum Qatar Petroleum E2E Capture AKER CARBON CAPTURE AKER CARBON MITSUBISHIS HEAVY INDUSTRIES Industrial Gases

New Dev Cos

VALUE PROPOSITION

Wide range of potential project developers (ranging from asset owners to various external players) with expected first mover advantage given complexity of process and value of underlying assets. Expectation that players with proven track records and relationships required to coordinate across the value chain for CO2 hubs (via JVs) will build competitive moat given complexity of operation

Financing

EPC

COMPETITIVE ADVANTAGE

Raw materials &

inputs

Demand / supply side policy	Strong policy support for monetization of carbon capture is crucial to development of CCUS market given high costs today	н
Relative domestic market maturity	Few regions currently have mature CCUS markets or project developers so first movers (likely those with experience in other large infra projects) will be able to build track record of success locally and capture first mover advantage given value of underlying asset and need for experienced developers capable of ensuring high uptime	Н
Regulatory environment & existing infrastructure	Streamlined, favorable permitting processes will significantly speed up CCUS deployment (esp. in hubs) while access to renewables and storage infrastructure are similarly crucial for near term deployment	M

High Medium Low N/A

CCUS | EPC

DESCRIPTION OF TECHNOLOGY

Includes all standard EPC processes for construction of large industrial facilities (e.g., site specific engineering considerations, process / supply chain management). Global EPCs likely to maintain position in the CCUS market given complexity of engineering needs and established relationships with key players

	MARKET DYNAMICS						
\$80-120		2020	2030	2040	2050		
\$80-120 Cumulative APS	US SAM (\$B, APS)	-	\$2.0 - 3.0	\$3.0 - 5.0	\$3.0 - 5.0		
US SAM (\$B, '20-50)	Annual global additions (Mtpa)	-	50 - 70	150 - 200	140 - 160		
	Avg. margin (%)	5 - 15%					

GLOBAL PLAYERS - COUNTRIES COMPANIES **EPCs** MCDERMOTT FLUOR TEN TECHNIP Insufficient data due to nascency of technology Oilfield service companies Schlumberger HALLIBURTON Industrial gas companies

VALUE PROPOSITION

System quality and reliability at a premium for CCUS given potential risks to operating asset. EPCs with strong understanding of technology and customer needs (e.g., type of facility, CO2 concentrations, safety concerns) and first movers can establish sustainable competitive advantage as the space develops

Project Development

OEM

Financing

Raw materials &

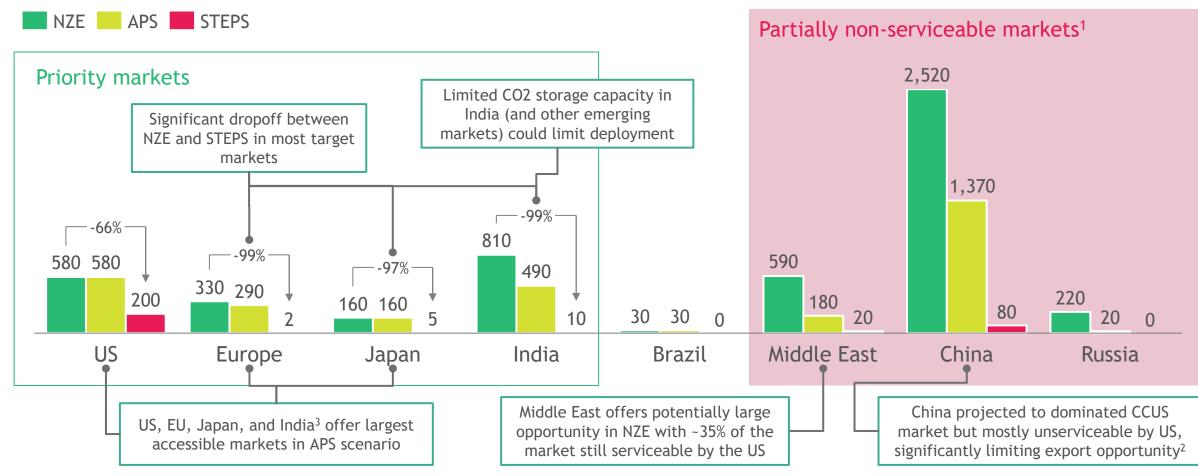
inputs

COMPETITIVE ADV	ANTAGE				
Research & technical leadership	Site engineering design will typically involve OEMs and requires significant technical knowledge for effective connection to infrastructure, especially for modular systems				
Low operational Ability to reduce costs for bespoke installations is important for eventual widespread adoption of CCUS but unlikely to create durable advantage as others adopt leading techniques					
Demand / supply side policy	EPCs operating in regions with monetization opportunities for CCUS likely to be first movers and establish track records of success to build competitive moat				
Relative domestic market maturity	More mature markets similarly likely to support first mover EPCs who can build competitive moats				
Regulatory environment & existing infrastructure	Supportive regulatory environment for permitting and ability to leverage existing infrastructure accelerates EPC processes and enables development of best practices				
	High Medium Low N/A				

CCUS

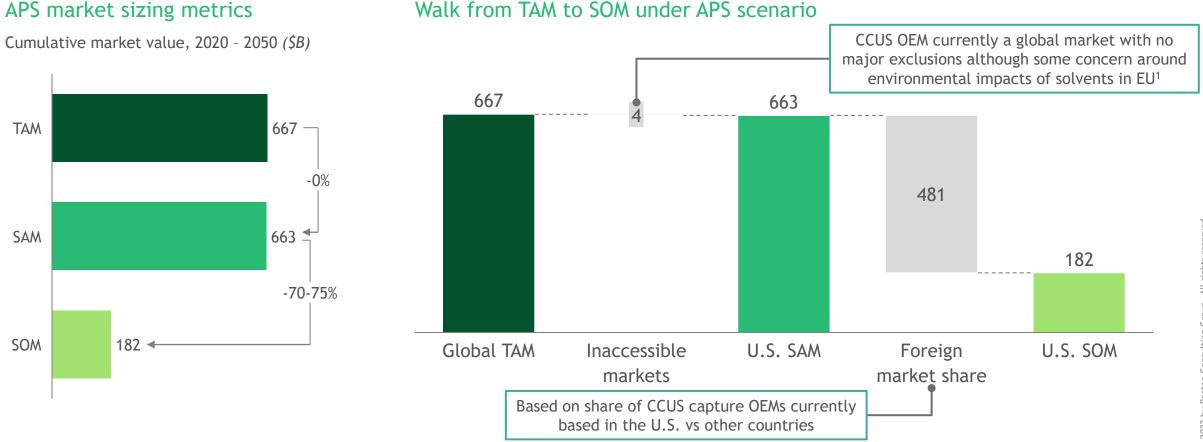
Transport

Storage & Utilization


Support Services

Operations/ Maintenance

Energy Inputs


U.S. domestic market presents large potential while other markets highly dependent on future policy given differences between NZE & STEPS projections

Installed CCUS capacity through 2050 by market and scenario (Mtpa)

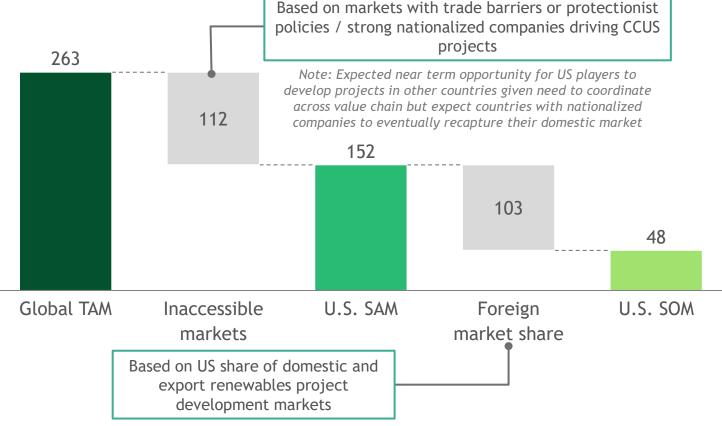
 Markets where part or all of the value chain would be unserviceable by US companies due to protectionist policies, prohibitive costs, etc. Middle East excludes PD, Fin, T&S, & Support Services; China excludes all VC segments except OEM, and Russia excludes all VC segments
 Scale may also drive cost advantage for Chinese players limiting US competitiveness
 Limited storage infrastructure likely also a limiting factor for India's CCUS deployment
 Source: IEA World Energy Outlook 2021, BCG Analysis

OEM | U.S. current share of CCUS OEM (capture) market of ~20-35% implies a conservative potential U.S. SOM of ~\$150 - 200B through 2050 for CCUS OEM

Walk from TAM to SOM under APS scenario

1. CCUS solvents projected to be global market with no major country exclusions but the machinery part of OEM may be excluded from certain regions. Since solvents and solvent replacement make up >60% of OEM market, SAM does not exclude any major regions Note: SAM excludes Russia given US sanctions and limited climate commitments. SOM assumed 20-35% capture of market share by US companies based on range of current share of

major CCUS OEMs in the US today and the share in Europe which is the current market leader Source: IEA World Energy Outlook 2021, BCG analysis


Project Development | U.S. projected to own high share of domestic market (~90%) & low share of export market (~10%) leading to U.S. SOM of ~\$50B

APS market sizing metrics

TAM 263 -40% SAM 152 -65-70% SOM 48

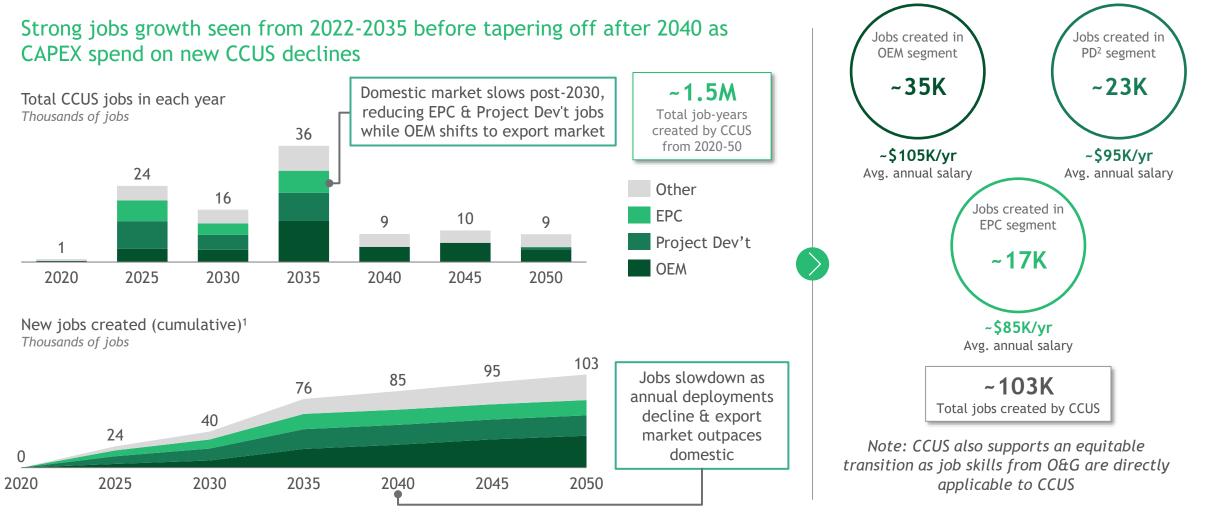
Cumulative market value, 2020 - 2050 (\$B)

Walk from TAM to SOM under APS scenario

Note: SAM excludes Russia, China, and the Middle East due to existence of major, nationalized companies handling project development in each. SOM assumed ~90% for domestic market and ~10% of export market based on US share of project development market for renewables both domestically and abroad (upper bound for domestic based on current US ownership of domestic CCUS project developer market) Source: IEA World Energy Outlook 2021, BCG analysis

EPC | U.S. projected to own high share of domestic market (~90%) & low share of export market (~20%) leading to U.S. SOM of ~\$40B

APS market sizing metrics


Cumulative market value, 2020 - 2050 (\$B)

Walk from TAM to SOM under APS scenario

Based on markets with trade barriers or protectionist policies 58 97 58 38 Global TAM Inaccessible U.S. SAM U.S. SOM Foreign markets market share Based on US share of domestic and export EPC markets for renewables and O&G

Note: SAM excludes China and Russia due to local regulations and nationalized companies handling EPC. SOM assumed at ~90% for domestic market (based on US company ownership of domestic EPC market for renewables and O&G) and ~25% for export based on US company share of global EPC market Source: IEA World Energy Outlook 2021, BCG analysis

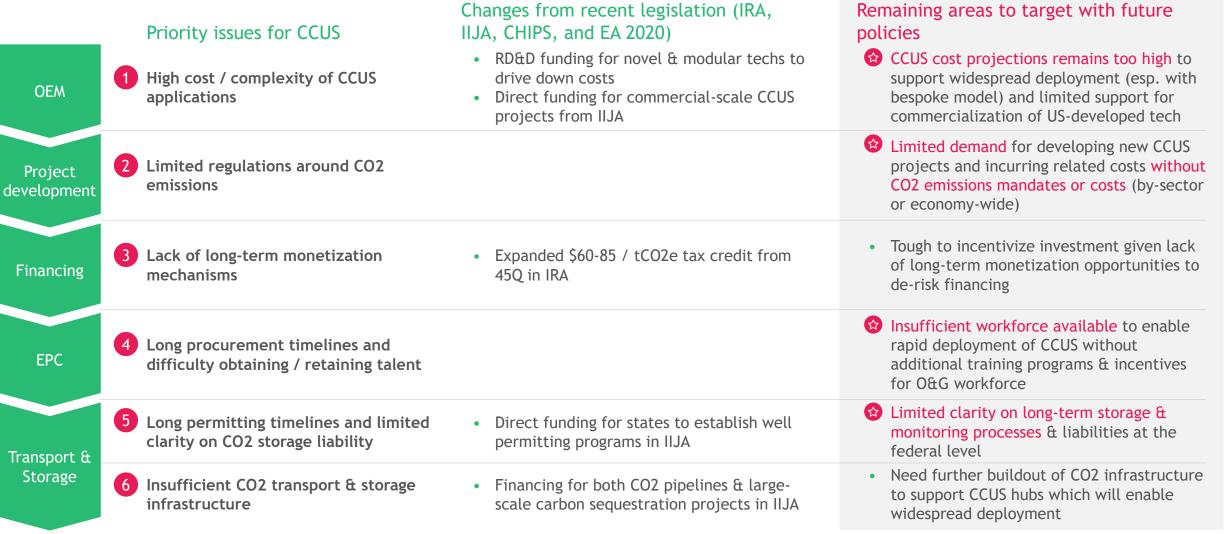
~100K jobs expected to be created by 2050 with OEM and Project Development the major drivers making up >50% of total jobs created

1. In APS scenario; incremental new jobs calculated as the sum of all non-negative one-year differences in # job-years (e.g., 2021 job-years minus 2020 job-years gives 2021 new jobs); incremental new jobs added to sum from prior period for cumulative calculation 2. Project development Source: IEA, BCG analysis

OEM | OEM space currently highly fragmented with no dominant players but opportunity for innovators to capture market share

	Areas for Competitive Advantage	Ranking	Summary analysis 😥 = Key dimension
	Raw material availability	High	• Raw materials required for solvents / sorbents are currently global commodities although this may change with future innovation
☆	Intellectual Property & innovation	High	 US leads in CCUS patents along with China, with Japan and South Korea in 3rd and 4th and then a big dropoff to the EU & Canada US O&G and industrial giants (e.g., ExxonMobil, Honeywell, Air Products) are all amongst the top innovators in the space which is currently dominated by international companies given complexity of processes Limited differentiation between different solvents / systems today with patent filings flat YoY; innovation coming from novel capture technologies such as metal organic frameworks which are one of the few areas demonstrating patent growth Proprietary nature of solvents is an issue due to inability to study environmental impact, limiting export potential (esp. to EU)
	Research & technical leadership	High	 US 2nd in publications, distantly behind China but with higher quality papers (based on citations per paper), and then a big dropoff to South Korea and England US DOE and Chinese Academy of Science are leading players in the space followed by wide range of Chinese and US universities
	Low operational costs	Low	 US and EU manufacturing labor is significantly costlier than other markets (~\$50/hr in the US & EU vs ~\$10/hr in China & Brazil and ~\$25/hr in Japan & Korea), with similar rankings but less extreme differences in labor costs for R&D and engineering roles US electricity prices are lower than in EU and Japan but more expensive than China, India, and Russia while US natural gas prices are amongst the lowest in the world after Russia
	Demand / supply side policy	High	• >\$100M in grants by the US government for R&D in the CCUS space with significant support from national labs and other bodies
	Relative domestic market maturity	Low	 Several US-based companies among the major OEMs today but market remains highly dispersed with Europe leading the US in number and scale of major OEMs (although many EU OEMs operate manufacturing plants in the US)
	Regulatory environment & existing infrastructure	High	 Several major manufacturers and manufacturing hubs already existing in the US Concerns from EU regulators around environmental/health impacts of solvents when they break down,
	Overall ranking	High	U.S. found to have high competitive advantage potential due to early leadership in IP & research and strong domestic policy. Commercialization of domestic technological advances & improved solvent management remain key focus area moving forward with EU & Asian OEMs currently owning most of the market today

Project Development | US has first mover advantage in project development with several IOCs and other international players developing capabilities


	Areas for Competitive Advantage	Ranking	Summary analysis 😥 = Key dimension
	Raw material availability	High	 Significant access to storage (>812 GtCO2e) along with significant emissions from stationary sources near storage sites (2 GtCO2e / yr from ~3300 stationary sources)
	Intellectual Property & innovation	High	• US project developers are leaders in managing large complex projects across the full value chain and tend to own the IP when developing international projects involving tech transfers (e.g., in Saudi Arabia)
	Research & technical leadership	High	 US O&G players are leaders in CO2 injection into saline aquifers and subsurface management with significant advantages in technical expertise in managing large sub-surface projects
	Low operational costs	Low	 US average wages significantly higher than any other region with average income per month ~\$6K while the EU's is ~\$4K, Japan's & South Korea's are ~\$3K, China's & Russia's are ~\$1K, and India's is ~\$200
	Demand / supply side policy	High	 Significant support for CCUS projects from Inflation Reduction Act and infrastructure bill with \$60-85/tCO2e tax credit and ~\$12B in funding for carbon capture hubs EU only other region with similar scale of incentives due to carbon price of ~\$80/tCO2e but significantly less investment into CCUS specifically
	Relative domestic market maturity	High	 US companies have been part of ~40% of all partnerships in CCUS globally with 8 of the top 15 companies with the most partnerships being US-based; most partnerships involve coalition building by project developers to incorporate partners up and down the CCUS value chain US leads in onshore CO2 storage although Europe leads in offshore storage (and unlikely to do store CO2 onshore in the EU)
☆	Regulatory environment & existing infrastructure	High	 US has invested heavily in developing CO2 pipelines (\$2.1B) and permitting programs for CO2 storage infrastructure (\$2.5B) with a significant head start over most other regions given extent of O&G pipelines (more miles than China, Canada, Russia combined) Leader in CO2 storage infrastructure with more projects under development than the rest of the world combined and more storage capacity than any other region except South America and Eurasia Understanding of local geology and politics is important for project development, potentially limiting export potential
	Overall ranking	High	U.S. has high competitive advantage potential today, with significant potential for domestic project development, robust government support, and several large players capable of exporting project development capabilities given first mover advantage and ability to coordinate up and down the value chain

Kou dimonsion

EPC | US competitive advantage in EPC space primarily due to first mover advantage driven by early domestic deployments

	Areas for Competitive Advantage	Ranking	Summary analysis 😰 = Key dimensio	n
	Raw material availability	N/A	Construction materials (e.g., cement, steel) are widely available	
	Intellectual Property & innovation	Low	• While relationships with OEMs can drive competitive advantage for EPCs, US remains middle of the road amongst EU and China regarding numbers of major EPCs and number of partnerships with major OEMs; this may change in future as US OEMs innovate and seek local partners for initial / validation deployments	
	Research & technical leadership	High	 Highly trained O&G workforce in the US provides much of the technical expertise required for CCUS projects Early domestic deployments in the US driving first mover advantage for domestic EPCs which could drive short term export opportunities as US EPCs develop track records of success 	
	Low operational costs	Low	 US average wages significantly higher than any other region with average income per month ~\$6K while the EU's is ~\$4K, Japan & South Korea's are ~\$3K, China's & Russia's are ~\$1K, and India's is ~\$200 Long procurement cycles and difficulty obtaining / retaining talent currently straining projects and expected to worsen as industry expands 	'S
	Demand / supply side policy	High	• IRA enhanced incentives require prevailing wages and apprenticeship opportunities which are biased towards domestic EPCs supporting US players in develop first mover advantages in CCUS deployments	
☆	Relative domestic market maturity	High	 US investment in deploying first of a kind commercial CCUS projects should drive first mover advantage for EPCs with US's current pipeline of projects expected to drive >100 Mtpa of CCUS capacity by 2030 (well ahead of EU at ~80 Mtpa and China at ~15 Mtpa) 	
	Regulatory environment & existing infrastructure	High	 Similar to project development with significant investment in the US in transport and storage Limited traction in permitting Class VI wells to date but significant efforts to streamline this process through federal funding a guidelines (e.g., USE IT Act) 	nd
	Overall ranking	High	U.S. found to have high competitive advantage in EPC due to leadership position in global CCUS deployments and ability to develop first mover advantage working on domestic projects despite concerns regarding labor costs and permitting timelines. This first mover advantage could result in export opportunities (particularly in the Middle East where many US EPCs already operate) in the near term but EPC expected to be highly localize in future	1

While recent legislation has addressed some priority issues for CCUS, additional policy could further boost US competitiveness and accelerate deployment

Source: <u>C2ES</u>, <u>DOE</u>, <u>IIJA</u>, IEA, BCG Analysis

Supply & demand side policies are needed to support CCUS with supply-side driving early growth while demand-side supports CCUS long term (I/II)

		Policy-based Investment-based 😥 Key interventions
	Demand side	Supply side
Technology- wide	 Increase demand for CCUS via incentives & regulations which create long-term monetization opportunities for CCUS (e.g., emissions regulations for power production, tax credits for CCUS in hard-to-abate sectors) Establish quality & verification standards for CCUS (e.g., CO2 capture rate, permanence) and align on standards with key export markets to ensure continued policy support and to de-risk projects Leverage government procurement for low-carbon power & industrial products (e.g., steel, cement) to increase demand for CCUS Leverage government procurement for synfuels & other products made from captured CO2 to create market for CO2 utilization 	 Leverage incentives (e.g., tax credits, grants for cost-sharing) and loan guarantees to reduce upfront costs for CCUS deployments and stimulate supply Invest in low-carbon CO2 utilization technology & provide incentives or low-cost financing for project deployment (e.g., synfuel facility) Continue investment in renewable and low-carbon energy
OEM		 Continue investments in IP R&D for next-generation CCUS technologies with lower costs, higher capture rates, and lower energy consumption (e.g., via DoE Funding Program) Continue centralized project development (e.g., CCUS hubs at industrial centers) that de-risk projects for OEMs, enable cost sharing, and enable industrial-sized applications of OEM technology (creating demand needed for domestic manufacturing hubs) Create opportunities and processes to increase research collaboration among national labs, universities and private sector

Key interventions

Investment-based 😭

Across project development and EPC, supply-side policies are crucial to developing the infrastructure needed to support widespread CCUS (II/II)

	Demand side	Supply side
Project Development ¹	 Create centralized, standardized RFPs for CCUS facilities or OEM inclusion in hub infrastructure to enable competition De-risk CCUS deployments through government assumption of liability for long-term CO2 storage beyond a required time window Add industry-specific aspects to 45Q to incentivize CCUS deployments in lower CO2 concentration / higher cost applications 	 Streamline and prioritize review/approvals process for CO2 storage permits, environmental impact, and zoning under a single regulatory authority which preempts state and regional agencies' jurisdiction and local governments' land-use authority Align on federal / state rules for assumption of CO2 storage liabilities after a set number of years and clarify CO2 storage monitoring and reporting requirements Classify pore space for CO2 sequestration as "public use" to resolve uncertainties around pore space ownership Continue providing necessary infrastructure (e.g., CCUS hubs with access to renewable energy, compression, transport, storage) to enable smaller OEMs with diverse technologies to deploy at scale to accelerate learnings and cost reductions Develop government resources to help communities understand the impact of CCUS deployments (e.g., air quality improvement, job creation, environmental benefits) to lessen community opposition Publicly-fund site selection surveys to identify ideal locations for CCUS deployments both in the US and abroad (e.g., identify CO2 storage resources and conduct source-sink matching to optimize transport and storage development) Provide low-cost financing to de-risk nascent commercial projects Invest in domestic renewable/low-carbon energy facility development in ideal CCUS locations to enable scaling
EPC	 Incentivize use of domestic EPC players for CCUS facility creation to gain experience and increase competitiveness for exported EPC 	 Develop training programs & incentives (e.g., tax credits tied to prevailing wages) to help O&G workers transition to working on CCUS to meet future demand

Policy-based

1. Specific policies for Transportation and Storage/Utilization provided in DAC analysis. Some policies for transport and storage of CO2 included in project development section Source: IEA, BCG analysis

Geothermal

Geothermal | Definition of each segment across value chain

Raw materials & inputs	OEM	Project Development	Financing	EPC	Operations/ Maintenance	Transport & Storage	Offtake	Support Services
Mining and refining of raw materials for: Steam and Binary Turbines: (Iron, Steel, Alloys, Titanium, Aluminum, Epoxy- plastics) Binary Working Fluids: (ammonia/water mixtures or hydrocarbons) Piping: (Steel, glass fiber casings) Heat Pumps: (Polyethylene, steel, aluminum) Mineral Extraction: sorbent and energy inputs for extracting lithium	R&D: closed-loop, enhanced geothermal systems (e.g., reservoir stimulation and fracturing), dispatchable geothermal, deep-drilling or supercritical Turbine manufacturing: turbines, separators, condensers, cooling towers, generators, and piping Direct heat use: Mineral extraction: primarily lithium using low- temperature sorbents	 Development includes: Origination Exploration Feasibility reports Drilling and testing of wells Environmental assessment and permitting PPA structuring Inter- connection queue Customers may be utilities, developers, corporate clients, or industrial users 	Developer typically arranges project financing Upfront capital costs are significant. Full capital stack: • Equity • Debt • Government support (tax credits and loans)	 EPC includes: Final site design and engineering Turbine and generator installation System connection and testing Supply-chain management EPC process often works closely with project developer transitioning from the exploration and feasibility phase to construction. 	 Operations: Resource management and optimization Reservoir modeling and monitoring General admin and engineering Maintenance: Turbine and generator maintenance Piping erosion 	Steam or other working fluid is piped through primarily steel casings Transport of electrons is provided by new / existing transmission lines (likely to site in areas with transmission access) Mineral extraction (namely lithium) would need to be shipped	Generated power is injected into the bulk electric system or local microgrid Geothermal can provide multiple sources of value in electricity markets, however current market mechanisms do not fully recognize and compensate geothermal for all potential services Extracted minerals such as lithium can provide supplementary revenue streams	Most materials are non-toxic, simple to decommission, and many of the parts can be recycled and used in other applications Lithium extraction and servicing

Geothermal | U.S. can drive market and lead in OEM, Project Development, and EPC both domestically and in select foreign markets

	,			,			High Medium	Low N/A
Raw materials & inputs	ОЕМ	Project Development	Financing	EPC	Operations/ Maintenance	Transport & Storage	Offtake	Support Services
U.S. Serviceable	Addressable Marke	t, APS (cumulative	2020 - 2050, \$B)					
\$10 - 15B	\$130 - 175B	\$340 - 460B	\$280 - 380B	\$170 - 230B	\$310 - 420B	N/A	N/A	N/A
Competitive Adva	antage							
Most raw materials (e.g., water, ammonia, hydrocarbons, steel, iron, and aluminum) are accessible globally. Government incentives for domestic materials might drive advantage in the commoditized markets.	Dry and flash steam turbines are mature technologies - advantages driven by scale and manufacturing efficiencies. New technologies such as EGS, AGS, binary plants, and hybrid plants (district heating, lithium extraction) present opportunity to differentiate.	Technical expertise (exploration/drilli ng), ability to secure permits, coordination across value chain, and access to financing drive advantage. Potential to utilize O&G technology and expertise. EGS changes exploration and de-risks development.	Market maturity and demand-side signals, government subsidies, and government risk reduction programs (e.g., project insurance and low-interest loans) lower cost of financing and drive competitive edge	Capital costs, technical difficulty, custom sites and design, integration with operators and developers, regulation, and environmental risk create barriers to entry. New technologies such as district heating and lithium extractors will require new expertise in EPC.	Dispatchability drives demand for energy management software to optimize deployment and enhance availability and reliability. Sensors and reservoir simulation preserve materials integrity and sustainability of reservoirs.	Transport of electrons is provided by new / existing transmission lines. Mineral extraction (e.g., lithium) would need to be shipped but does not require special technology or expertise.	Offtake of electrons is limited to regional wholesale, retail, and PPA markets. Minerals extracted from brine has potential for competitive advantage, driven by technological development and scale.	Ability to offer support services is non- differentiated and localized. One area for differentiation is add on facilities particularly in lithium extraction.

Transport & Storage Support Services

Offtake

Operations/ Maintenance

Geothermal | OEM

DESCRIPTION OF TECHNOLOGY

Geothermal OEM consists of the manufacturing and assembly of turbines (steam and binary), drilling equipment, piping, mineral extraction rigs, and heat-resistant downhole equipment

	MARKET DYNAMI	CS			
\$130-175B		2020	2030	2040	2050
Cumulative APS	US SAM (\$B, APS)	-	\$5 - 10	\$4 - 7	\$4 - 7
US SAM (\$B, '20-50)	Incremental capacity (GW)	-	8-12	6-10	6-10
	Avg. margin (%)	20 - 25%			

COMPANIES

GLOBAL PLAYERS - COUNTRIES

HQs of major OEMs

Our Technologies	INDUSTRIES	O Eavor [−]
G G		
ORMAT	taffic	JAPAN RENEWABLE ENERGY
TOS	HIBA	
SIE	MENS	

VALUE PROPOSITION

OEM presents a clear opportunity to build durable competitive advantage in a high-value area, particularly around IP for new and emerging technologies. As IP is developed and refined, supportive policies to scale production and capture economies of scale can provide an early advantage for domestic players as well

Project Development Financing

EPC

Raw materials 8

COMPETITIVE AD	VANTAGE
Intellectual Property & innovation	Highly concentrated market of OEMs currently with many focused on well-established mature turbine technologies (flash and binary). Innovative technologies (e.g., plasma drills, heat-resistant downhole equipment) and modularization of technology could drive competitive advantage.
Research & technical leadership	R&D funding to support technology breakthroughs important to develop initial IP and build moats around next-generation technologies.

High	Medium	Low	N/A
------	--------	-----	-----

Transport & Storage Support Services

Offtake

Operations/ Maintenance

Financing

EPC

Geothermal | Project development

DESCRIPTION OF TECHNOLOGY

Project development drives most of the value in geothermal and integrates with EPC and occasionally OEM players; it includes permitting, exploration, drilling, testing, subsurface mapping, and reservoir simulation.

	MARKET DYNAMI	CS			
\$340-460B		2020	2030	2040	2050
Cumulative APS	US SAM (\$B, APS)	-	\$20 - 30	\$10 - 15	\$12 - 18
US SAM (\$B, '20-50)	Incremental capacity (GW)	-	8-12	6-10	6-10
	Avg. margin (%)	15 - 20%			

COMPANIES

GLOBAL PLAYERS - COUNTRIES

VALUE PROPOSITION

Highly concentrated, vertically integrated project developers. Exploration and drilling is the most challenging and expensive part of the project, similar to O&G in requisite capabilities and technology. Given the complexity, risk, and capital costs, developers with proven track records and economies of scale tend to dominate.

OEM

Raw materials &

inputs

COMPETITIVE ADV	ANTAGE	
Intellectual Property & innovation	IP and innovation in exploration (seismic, geochemical, data algorithms) and drilling separate successful developers. Strong O&G players an advantage given crossover of expertise and technology.	Н
Relative domestic market maturity	Exploration and drilling benefit from field experience. Given low levels of deployment in most of the world, mature markets give advantages to domestic players as they gain valuable learning experience.	н
Regulatory environment & existing infrastructure	Permitting and regulations can add years to project timelines, which increases risks and financing costs. Streamlined, favorable permitting processes will significantly speed up deployment and drive down costs, giving domestic developers more opportunities to scale and learn.	L

Transport & Storage Support Services

Offtake

Operations/ Maintenance

Geothermal | EPC

DESCRIPTION OF TECHNOLOGY

Includes all standard EPC processes for construction of large industrial facilities (e.g., site specific engineering considerations, process / supply chain management) and includes connection of electrical systems (e.g. turbines and generators).

	MARKET DYNAMICS					
\$170-230		2020	2030	2040	2050	
	US SAM (\$B, APS)	-	\$10 - 15	\$5 - 10	\$5 - 10	
	Incremental capacity (GW)	-	8-12	6-10	6-10	
	Avg. margin (%)	5 - 15%				

GLOBAL PLAYERS - COUNTRIES
COMPANIES

Image: Companies

<

VALUE PROPOSITION

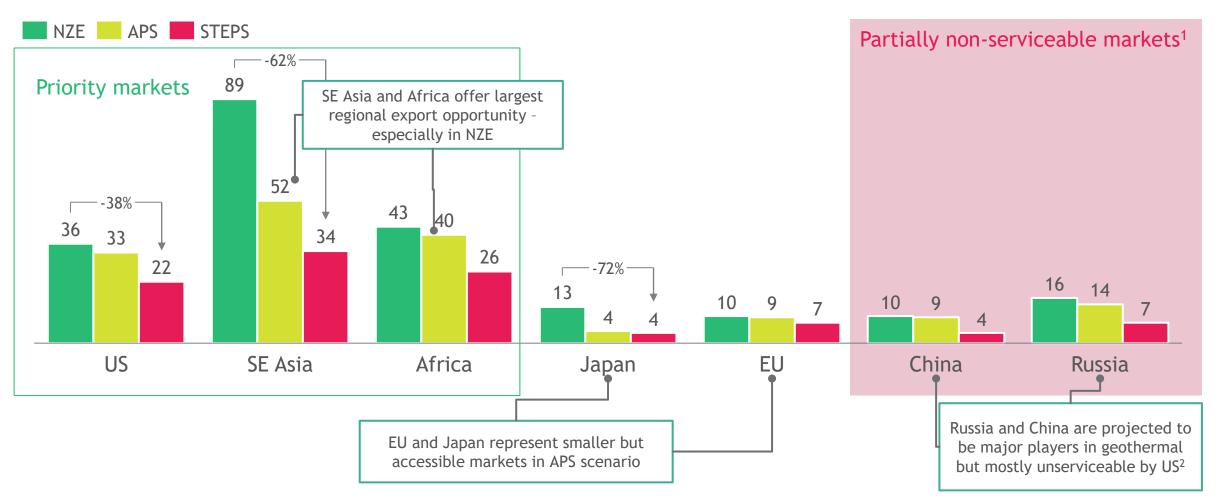
Sites depend on the geologic and system characteristics, so efficient and quality designs are at a premium. Understanding of hybrid technologies (e.g., lithium extraction with power generation) and brownfield plants will be a source of competitive advantage going forward.

OEM

Raw materials &

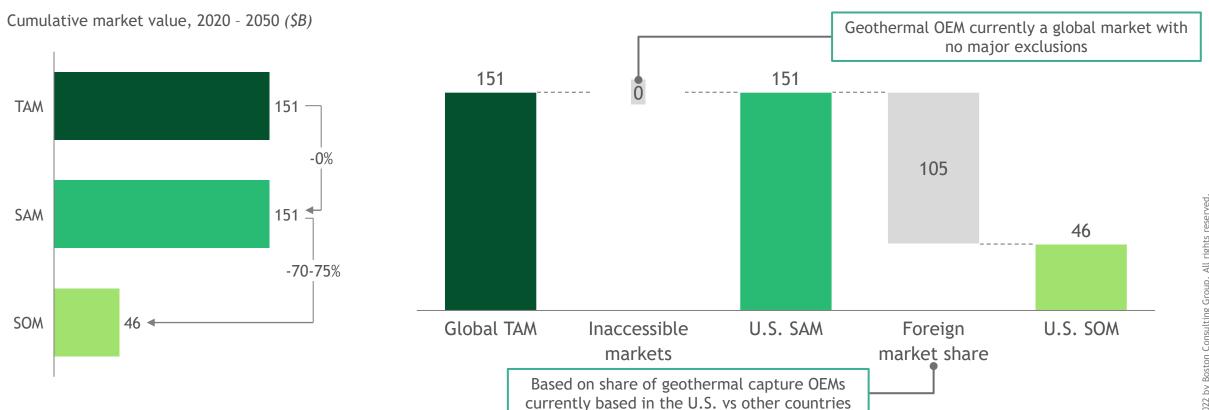
inputs

Project Development


Financing

COMPETITIVE ADV	NTACE	
Research & technical leadership	Site engineering design will typically involve developers and OEMs and requires significant technical knowledge for effective connection to infrastructure. This becomes even more important as complex hybrid plants (e.g., lithium extraction, district heating) become more common.	Н
Low operational costs	Ability to reduce costs for custom designs and installations is important for learning and scale to create durable advantage as others adopt leading techniques.	M
Relative domestic market maturity	More mature markets similarly likely to support first mover EPCs who can build competitive moats.	L

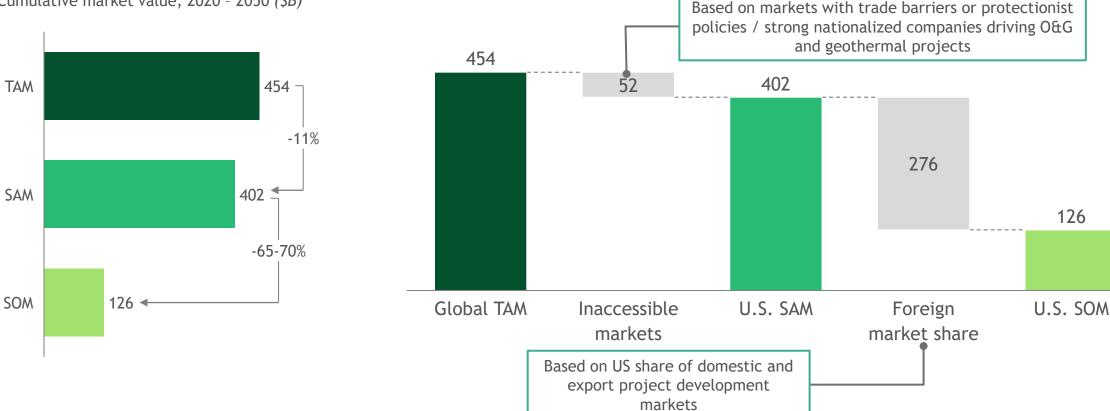
Top countries by geothermal capacity


U.S. domestic market presents large potential along with export opportunities in SE Asia and Africa

Installed geothermal capacity through 2050 by market and scenario (GW)

1. Markets where part or all of the value chain would be unserviceable by US companies due to protectionist policies, prohibitive costs, etc. 2. Scale may also drive cost advantage for 98 Chinese players limiting US competitiveness Source: IEA World Energy Outlook 2021, BCG Analysis

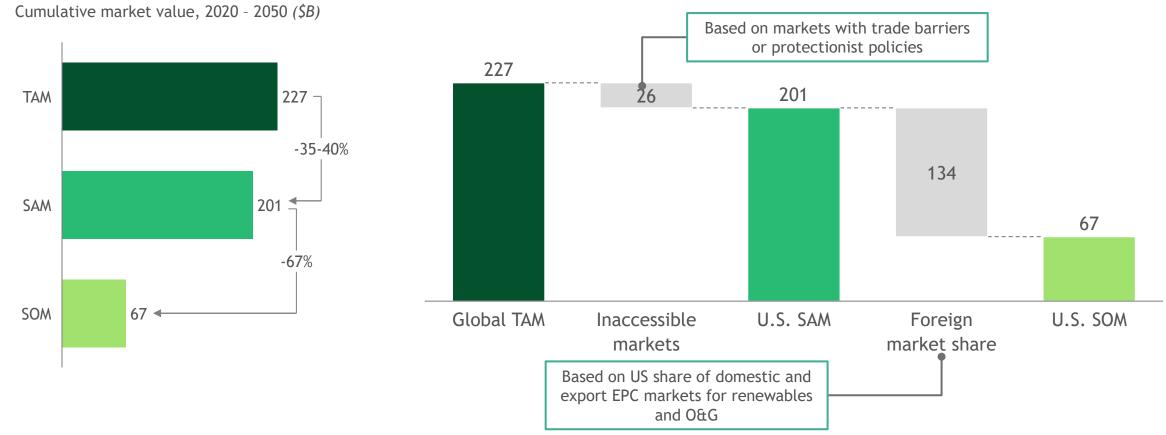
OEM | U.S. current share of Geothermal OEM (capture) market of ~20-35% implies a conservative potential U.S. SOM of ~\$40 - 65B through 2050


Walk from TAM to SOM under APS scenario

APS market sizing metrics

Project Development | U.S. projected to own high share of domestic market (~90%) & low share of export market (~20%) leading to U.S. SOM of ~\$125B

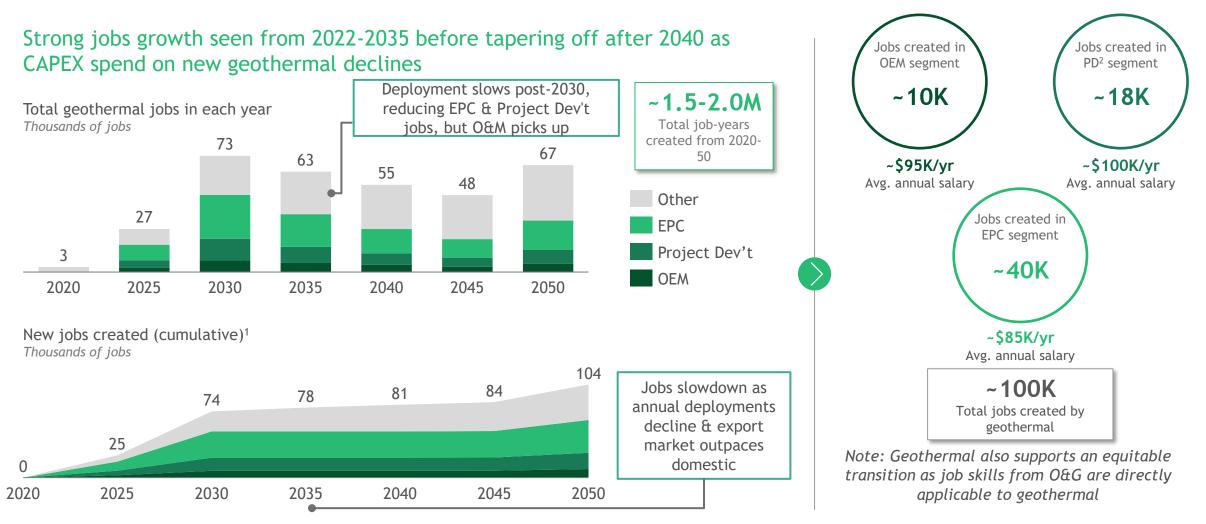
Walk from TAM to SOM under APS scenario


APS market sizing metrics

Cumulative market value, 2020 - 2050 (\$B)

Note: SAM excludes Russia and China due to existence of major, nationalized companies handling project development in each. SOM assumed ~90% for domestic market and ~20% of export market based on US share of project development market for geothermal both domestically and abroad Source: IEA World Energy Outlook 2022, CEP, BCG analysis

EPC | U.S. projected to own high share of domestic market (~90%) & low share of export market (~20%) leading to U.S. SOM of ~\$70B



Walk from TAM to SOM under APS scenario

APS market sizing metrics

Note: SAM excludes Russia and China due to existence of major, nationalized companies handling project development in each. SOM assumed ~90% for domestic market and ~20% of export market based on US share of project development market for geothermal both domestically and abroad Source: IEA World Energy Outlook 2022, BCG analysis

~100K jobs expected to be created by 2050 with EPC and O&M the major drivers making up >55% of total jobs created

1. In APS scenario; incremental new jobs calculated as the sum of all non-negative one-year differences in # job-years (e.g., 2021 job-years minus 2020 job-years gives 2021 new jobs); 102 incremental new jobs added to sum from prior period for cumulative calculation 2. Project development Source: IEA, BCG analysis

Project Development | U.S. can leverage advantages in O&G tech and expertise and nascent startup industry to lead in project development

😭 😑 Key dimension

	Areas for Competitive Advantage	Ranking	Summary analysis	
	Raw material availability High		 Most materials (e.g., steel, iron, aluminum) are readily available US has some of the richest geothermal resources in the world, estimated by the DOE to be over 500 GW with <5 GW developed today 	
	Intellectual Property & innovation	High	 O&G industry leads in exploration and drilling patents - three US companies (Haliburton, Schlumberger, and Baker) represent nearly 40% of the patents held by the top 10 firms globally New technologies like enhanced geothermal systems (EGS), seismic advances (e.g., full wavefield inversion, wireless micro electromechanical systems, and vertical seismic profiling), and downhole sensors improve exploration and reduce cost 	
	Research & technical leadership	High	 While China leads the research volume, US (in 2nd place) produces higher quality research with 33% more citations per publication Research activity in the US is led by the DOE in (4th globally) and U. of California - all campuses (13th globally) US has strong existing developers, led by Ormat, and can leverage O&G developers like Haliburton and Schlumberger 	
	Low operational costs	Low	 US and EU manufacturing labor is significantly costlier than other markets (~\$50/hr in the US & EU vs ~\$10/hr in China & Braz ~\$25/hr in Japan & Korea), with similar rankings but less extreme differences in labor costs for R&D and engineering roles Due to favorable geological characteristics, heat is often closer to the surface in the US, reducing project costs and increasing efficiency of the system 	
	Demand / supply side policy	High	 IRA/IIJA extended the ITC/PTC for geothermal and gave a longer runway for development (2035), providing much needed long-term clarity for developers 48C advanced energy project credit of 30% of investment cost; IRA credits can decrease US LCOE by up to 30% Other sources of funding is limited, even when compared to smaller energy industries like nuclear 	
	Relative domestic market maturity	High	 US has deployed 3.7 GW of geothermal - more than any other country - and represents 20% of the global capacity A strong legacy O&G industry contributes to the maturity of the technology, supply chains, and labor force domestically CA has set a target for an additional 1 GW by 2030 and already contributes 6% of the state's overall production 	
	Regulatory environment & existing infrastructure	Low	 Regulation and permitting cause delays and increase costs, slowing domestic deployment which is critical for developers to climb the learning curve and achieve scale It takes an average of 7-10 years to develop a geothermal plant in the US. Of that, 4-6 years is permitting due to a poor regulatory environment that makes it significantly easier to get a permit for an O&G project. 	
	Overall ranking		The US is already a leader in both geothermal and O&D development and can build on its position by improving the policy and regulatory environment	

Kou dimonsion

OEM | US has fallen behind OEMs in Asia but has opportunity to lead in new technologies like closed-loop, binary, and lithium extraction

Areas for Competitive Advantage	Ranking	Summary analysis
Raw material availability	N/A	Most materials (e.g., steel, iron, aluminum) are readily available
Intellectual Property & innovation	Low	 Innovation concentrated in Asia, with China leading and the US a distant 4th US patent activity has been growing at a modest 3% since 2016 Ormat leads the US and ranks 5th globally Opportunity exists in next-gen technologies like mining (lithium extraction), closed-loop systems, and more efficient binary plants
Research & technical leadership	High	 While China leads the research volume, US (in 2nd place) produces higher quality research with 33% more citations per publication Research activity in the US is led by the DOE in (4th globally) and U. of California (13th globally)
Low operational costs	Low	 US and EU manufacturing labor is significantly costlier than other markets (~\$50/hr in the US & EU vs ~\$10/hr in China & Brazil and ~\$25/hr in Japan & Korea), with similar rankings but less extreme differences in labor costs for R&D and engineering roles US electricity prices are lower than in EU and Japan but more expensive than China, India, and Russia while US natural gas prices are amongst the lowest in the world after Russia
Demand / supply side policy	Low	 Clean energy manufacturing tax credits were limited to other technologies and do not apply to geothermal Bonus 10% ITC credit is given to developers who meet the domestic content requirements (DCR) of at least 40% of total costs must be attributable to domestic US manufacturing; this is at par with many other countries such as UK, India having 40-60% DCR
Relative domestic market maturity	High	 Outside of Ormat, which manufactures its own equipment, the US does not have many strong OEMs US has deployed 3.7 GW of geothermal - more than any other country - and represents 20% of the global capacity CA has set a target for an additional 1 GW by 2030. It already contributes 6% of the state's overall production Salton Sea project is the largest lithium extraction geothermal hybrid plant in the world
Regulatory environment & existing infrastructure	High	• Bonus 10% credit is given to manufacturers who meet the domestic content requirements (DCR) of at least 40% of total costs must be attributable to domestic US manufacturing; this is at par with many other countries such as UK, India having 40-60% DCR
Overall ranking		Current OEM market is dominated by Asia, making it unlikely the US will be able to capture market share in mature technologies. However, it has an opportunity to lead in new technologies and leverage its domestic market and research foundation.

EPC | U.S. in strong position to continue winning in domestic market with potential for exports

Areas for Competitive Advantage	Ranking	Summary analysis 😒 = Key dimension
Raw material availability	N/A	EPC competitive advantage is not driven by raw materials
Intellectual Property & innovation	N/A	EPC competitive advantage is not driven by patents
Research & technical leadership	High	 Highly integrated with project development US has abundance of project developers and EPCs in geothermal and O&G with technical leadership and expertise While China leads the research volume, US (in 2nd place) produces higher quality research with 33% more citations per publication Geothermal projects are custom designed due to the changing qualities of the geology, reservoir, and style of plant The emergence of hybrid plants (e.g., power generation with district heating, lithium extraction, or other output) adds complexity to the design and build
Low operational costs	Low	 US average wages significantly higher than any other region with average income per month ~\$6K while the EU's is ~\$4K, Japan's & South Korea's are ~\$3K, China's & Russia's are ~\$1K, and India's is ~\$200
Demand / supply side policy	N/A	EPC competitive advantage is not driven by demand or supply side policy
Relative domestic market maturity	High	 Outside of Ormat, which manufactures its own equipment, the US does not have many strong OEMs US has deployed 3.7 GW of geothermal - more than any other country - and represents 20% of the global capacity CA has set a target for an additional 1 GW by 2030. It already contributes 6% of the state's overall production
Regulatory environment & existing infrastructure	Low	 It takes an average of 7-10 years to develop a geothermal plant in the US Extended timelines leads to less projects being built in the US, less scaling, and slower learning
Overall ranking		U.S. has high competitive advantage domestically today, but in order to open export opportunities, it will need to focus on developing a competitive edge in new hybrid plants and efficient designs. The fastest way to accomplish this is to remove regulatory barriers, taking advantage of a larger domestic market and rich geothermal resources, and expedite deployment - leading to greater scale and faster learning.

IRA/IIJA tax credits reduce cost of geothermal but did not address several important policy gaps

	Priority issues for geothermal	Changes from recent legislation (IRA, IIJA, CHIPS, and EA 2020)	Remaining areas to target with future policies
OEM	Shortage of funding for commercialization-focused programs	 Energy Act of 2020 - Advanced Geothermal Innovation Leadership (AGILE) Act IIJA included \$80 M in funding for EGS 	Continued shortage of funding for commercialization-focused programs
Project	Lack of quality data characterizing the subsurface		Continued lack of data and characterization of subsurface
evelopment	Obstructive permitting and regulations		Permitting and regulations problems remain unaddressed
Financing	High financing costs due to long timelines and increased risk	• Extension ITC at 30% ITC and 10% bonus if requirements are met. Applies to facilities after 2024 and phases down in 2035	 Expired government financing, cost-sharing, and risk insurance programs
EPC	Lack of procurement targets for hybrid plants		Continued lack of procurement targets for hybrid plants at the federal level, opportunities to develop large direct heat and power generation projects
Offtake	Limited baseload or firm generation requirements in RPS	 IRA starts to treat geothermal more like clean tech 	Outside of CA, limited baseload or firm generation requirements in RPS to incentivize dispatchable resources
	Lack of consistent subsidies compared to other clean resources	 PTC extension for electricity for geothermal. Up to 1.5 cents/kWh Phases down in 2032, giving more long-term clarity 	 Concern the credits won't be permanent Subsidies for other resources are more generous, reducing competitiveness
Source: N	IREL, DOE, IIJA, IEA, CTVC IRA Tracker, BakerHostetler	r, RMI, <u>Energy Act of 2020</u> , BCG Analysis	Priority areas

Deep dive | Detailed list of potential advanced geothermal policy actions to support U.S. competitiveness

		Policy-based Investment-based 🔄 Key interventions
	Demand side	Supply side
Technology-wide	 Incentivize zero-carbon firm power and capacity Create a designated geothermal agency to raise awareness and harmonize regulations and permitting requirements Include heating and cooling in emission standards Set government procurement targets for district heating and direct use 	 Continue demonstration projects in lithium extraction Launch commercialization-focused cost-sharing programs to prioritize technologies like supercritical wells and enhanced geothermal systems Streamline domestic permitting, review, and approval timelines for geothermal projects Extend lifetime for tax credits to provide long-term certainty for developers
Project Development	Set target for new geothermal leases on federal land and require BLM to hold auctions more frequently than every two years	 De-risk private investment in new development via loan guarantees, risk insurance, and/or tax credits Facilitate partnerships with O&G companies to attract capital and transfer expertise
OEM		 Continue to facilitate research collaboration among National Labs, universities, and the private sector De-risk private investment in geothermal manufacturing facilities through manufacturing tax credits
EPC	 Procure geothermal projects for relevant govt. facilities (e.g., national labs, military bases) to incentivize private investment in geothermal 	Streamline permitting process for geothermal projects to give domestic EPC firms geothermal experience

Overview of key assumptions

Value	Impact on Calculations	Source
Varies by year, market, and scenario	Geothermal capacity is predicted by applying 2019 geothermal-per-country %'s to the IEA 2022 total geothermal projections. These capacity predictions form the basis of all other calculations; however, they can be slightly conservative since they do not capture the potential of new technologies (EGS and deep drilling) to expand what is technically and economically possible for geothermal.	IEA 2022/2019 World Energy Outlook
Varies by year and market	Current ratios of district heating to power generation by country and the 2011 IEA report were used to determine the appropriate capacity ratio to apply to the IEA power generation forecasts.	IEA Geothermal Roadmap and current country data
Varies by fixed vs. floating	The CAPEX %'s create a split per value chain from the total capital costs, which in turn informs segment prioritization. Since the NREL analysis is made for 8.0-MW turbines, expert input refined the %'s to match larger turbines used today.	2022 NREL Annual Technology Baseline
Varies by year and by fixed vs. floating	OpEx is used to calculate the market size for O&M and have an impact on total market size numbers as well as value chain prioritization.	2022 NREL Annual Technology Baseline
Varies by value chain and mostly is limited to the Americas	The addressable market is used to calculate the obtainable market (SOM). The offshore wind SAM is conservative and only includes countries where the U.S. has a realistic opportunity to expand into given economic and political barriers.	Expert input & BCG analysis
Varies by value chain and domestic vs. export SAM	SOM calculations have an impact on jobs numbers and jobs growth and inform what the opportunity is in the U.S. and abroad.	Expert input & BCG analysis
	Varies by year, market, and scenario Varies by year and market Varies by fixed vs. floating Varies by year and by fixed vs. floating Varies by value chain and mostly is limited to the Americas Varies by value chain and	Varies by year, market, and scenarioGeothermal capacity is predicted by applying 2019 geothermal-per-country %'s to the IEA 2022 total geothermal projections. These capacity predictions form the basis of all other calculations; however, they can be slightly conservative since they do not capture the potential of new technologies (EGS and deep drilling) to expand what is technically and economically possible for geothermal.Varies by year and marketCurrent ratios of district heating to power generation by country and the 2011 IEA report were used to determine the appropriate capacity ratio to apply to the IEA power generation forecasts.Varies by fixed vs. floatingThe CAPEX %'s create a split per value chain from the total capital costs, which in turn informs segment prioritization. Since the NREL analysis is made for 8.0-MW turbines, expert input refined the %'s to match larger turbines used today.Varies by year and by fixed vs. floatingOpEx is used to calculate the market size for O&M and have an impact on total market is used to calculate the obtainable market (SOM). The offshore wind SAM is conservative and only includes countries where the U.S. has a realistic opportunity to expand into given economic and political barriers.Varies by value chain and mostly is limited to the AmericasSOM calculations have an impact on jobs numbers and jobs growth and inform what

Disclaimer

The services and materials provided by Boston Consulting Group (BCG) are subject to BCG's Standard Terms (a copy of which is available upon request) or such other agreement as may have been previously executed by BCG. BCG does not provide legal, accounting, or tax advice. The Client is responsible for obtaining independent advice concerning these matters. This advice may affect the guidance given by BCG. Further, BCG has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate.

The materials contained in this presentation are designed for the sole use by the board of directors or senior management of the Client and solely for the limited purposes described in the presentation. The materials shall not be copied or given to any person or entity other than the Client ("Third Party") without the prior written consent of BCG. These materials serve only as the focus for discussion; they are incomplete without the accompanying oral commentary and may not be relied on as a stand-alone document. Further, Third Parties may not, and it is unreasonable for any Third Party to, rely on these materials for any purpose whatsoever. To the fullest extent permitted by law (and except to the extent otherwise agreed in a signed writing by BCG), BCG shall have no liability whatsoever to any Third Party, and any Third Party hereby waives any rights and claims it may have at any time against BCG with regard to the services, this presentation, or other materials, including the accuracy or completeness thereof. Receipt and review of this document shall be deemed agreement with and consideration for the foregoing.

BCG does not provide fairness opinions or valuations of market transactions, and these materials should not be relied on or construed as such. Further, the financial evaluations, projected market and financial information, and conclusions contained in these materials are based upon standard valuation methodologies, are not definitive forecasts, and are not guaranteed by BCG. BCG has used public and/or confidential data and assumptions provided to BCG by the Client. BCG has not independently verified the data and assumptions used in these analyses. Changes in the underlying data or operating assumptions will clearly impact the analyses and conclusions.

bcg.com